7.2.2.2. Satisfiability. We turn now to one of the most fundamental problems
of computer science: Given a Boolean formula F(zy,...,x,), expressed in so-
called “conjunctive normal form” as an AND of ORs, can we “satisfy” F by
assigning values to its variables in such a way that F(z,...,z,) = 17 For
example, the formula

F(z1,22,23) = (21 VT2) A (22 Vo3) A (B4 V T3) A (F1 V Bo V 223) (1)
is satisfied when z1z2x3 = 001. But if we rule that solution out, by defining
G(Il,xz,l‘g) =F($1,I2,I3}/\(I1 VIzV.‘Eg], (.‘2}

then G is unsatisfiable: It has no satisfying assignment.

that simplification, and with ‘z;’ identical to ‘j’, Eq. (1) becomes
Fo={{1,2},{2,3},{L,3},{1,2,3}}.

And we needn’t bother to represent the clauses with braces and commas either;
we can simply write out the literals of each clause. With that shorthand we’re
able to perceive the real essence of (1) and (2):

F=1{12,23,13,123}, G =FU{123). 3)

Find a binary sequence x, ...zg that has no three equally spaced 0s and no
three equally spaced 1s. For example, the sequence 01001011 almost works; but
it doesn’t qualify, because x5, x5, and zg are equally spaced 1s.

Find a binary sequence x, ...zg that has no three equally spaced 0s and no
three equally spaced 1s. For example, the sequence 01001011 almost works; but
it doesn’t qualify, because x5, x5, and zg are equally spaced 1s.

integers j and k: Ifn is sufficiently large, every binary sequence 1 ...z, contains
either j equally spaced (s or k equally spaced 1s. The smallest such n is denoted

Find a binary sequence x, ...zg that has no three equally spaced 0s and no
three equally spaced 1s. For example, the sequence 01001011 almost works; but
it doesn’t qualify, because zs, 5, and zg are equally spaced 1s.

integers j and k: If n is sufficiently large, every binary sequence 1 . .. T, contains
either j equally spaced (s or k equally spaced 1s. The smallest such n is denoted
Find Boolean formula satisfiable iff 3 n-bit sequence with no j equally
spaced Os and not k equally spaced 1s. A variable x; for each bit...

Find a binary sequence x, ...zg that has no three equally spaced 0s and no
three equally spaced 1s. For example, the sequence 01001011 almost works; but
it doesn’t qualify, because zs, 5, and zg are equally spaced 1s.

integers j and k: If n is sufficiently large, every binary sequence 1 . .. T, contains
either j equally spaced (s or k equally spaced 1s. The smallest such n is denoted

Find Boolean formula satisfiable iff 3 n-bit sequence with no j equally
spaced Os and not k equally spaced 1s. A variable x; for each bit...
Let us accordingly define the following set of clauses when j,k,n > 0:

waerden (j,k;n) = {(T‘ V&ipa VeV Tipo1)a) | 1<i<n-(j-1)d,d> l}
U{(# VEiaV-VEigoya) |1 <i<n—(k—-1)d,d>1}. (10)

Find a binary sequence x, ...zg that has no three equally spaced 0s and no
three equally spaced 1s. For example, the sequence 01001011 almost works; but
it doesn’t qualify, because zs, 5, and zg are equally spaced 1s.
integers j and k: If n is sufficiently large, every binary sequence 1 . .. T, contains
either j equally spaced (s or k equally spaced 1s. The smallest such n is denoted
Find Boolean formula satisfiable iff 3 n-bit sequence with no j equally
spaced Os and not k equally spaced 1s. A variable x; for each bit...

Let us accordingly define the following set of clauses when j,k,n > 0:

waerden (j,k;n) = {(T‘ V&ipa VeV Tipo1)a) | 1<i<n-(j-1)d,d> l}
U{(# VEiaV-VEigoya) |1 <i<n—(k—-1)d,d>1}. (10)

for i from 1 to n-(j-1)
for d from 1 to floor((n-i)/(j-1))

AddClause ({i+0*d, i+1xd, o, i+ (j-1)*d})

for i from 1 to n-(k-1)
for d from 1 to floor((n-i)/(k-1))
AddClause ({-(i+0*d), -(i+1*d), ..., -(A+&-1*d)})

c339

-3 0

-1 -2

p cnf 9 32
1230
1350
1470
1590
2340
2460

-1-3-50
-1-4-70

-1 -5

-9 0

-2-3-40
-2 -4 -60
-2 -5

-8 0

-3-4-50

2580
3450

-3-5-7T0

-3 -6 -90

3570
3690
4560

-4 -5 -60

-4 -6

-8 0

-7 0

-5 -6

4680

-5 -7 -90

5670
5790

-6 -7 -8 0

-7 -8 -90

6780

7890

c338

-3 0

-1 -2

p cnf 8 24
1230
1350
1470
2340
2460

-1-3-50
-1-4-70
-2-3-40
-2-4-60
-2 -5

-8 0

-3-4-50

2580
3450

-3 -5-7T0

-4 -5 -60

-4 -6

3570
4560

-8 0

-7 0

-5 -6

4680

-6 -7 -8 0

5670
6780

Online SAT Solver

Propositional theory in DIMACS format

£338
panf 824
1230

UL I I S A VR
@@ e U R W e WD

LihboDoooooooooO

e LR o0 o0 D b
ocoo

A

solve

Answer

sat

Model

4[s]

=]

7

Online SAT Solver

Propositional theory in DIMACS format Answer

c339 unsat
pcnf 932

1230

1350

1470

1580

2340

2460

2580

3450

B570

BE00

4560

4EBD

SE70

5780

6780 P

solve

DIMACS (CNF) format and SAT Solvers

= = ||| [Y people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html
| Reload this page !

Example:

Here is the CNF file that corresponds to the simple formula discussed above:
simple v3_e2.cnf
enf 3 2

-3 0
3-10

B=T 00

DIMACS (CNF) format and SAT Solvers

= = C [www.satlive.org/solvers/

SAT solvers

CDCL sat solvers

Clasp |53
Glucose |33
Lingeling (X3
Minisat
Picosat [

sats () I c

C | [minisat.se/MiniSat.html

Main
MiniSat
MiniSat+
SatELite

Papers

Authors
Links

MINISAT

MimiSar started out 2003 as an effort to help |
documentation (through the following paper).
containing all the features of the current stat
dynamic variable order, two-literal watch sche
variables.

In later versions, the code base has grown a bit"
competition 2005, version 1.13 proved that Mix

Below we provide a set of different versions o
extensions and suggestions for improvements, .

freer licence than the LGPL, basically allowing y

C | [0 www.labri.fr/perso/isimon/glucose/

The Glucose SAT Solver

Glucose is based on a new scoring scheme (well, not
so new now, it was introduced in 2008) for the clause
learning mechanism of so called "Modern" SAT sovlers
(it is based our IJCAI'0S paper). It is designed to be
parallel, since 2014. This page summarizes the
technigues embedded in all the versions of glucose.
The name of the Solver name is a contraction of the
concept of "glue clauses", a particular kind of clauses
that glucose detects and preserves during search.

A Glucose is heavily based on Minisat, so please do
cite Minisat also if you want to cite Glucose.

= € | [Y fmv.jku.at/picosat/

FMV
T

-an
L ¥TE
= ol

J

Il 5

,.4

PicoSAT

News

New release 960.

Reentrant PicoSAT Versions 953 and 954.

Download

& = C [} www-cs-faculty.stanford.edu/~uno/programs.htmi

DIMACS-TO-SAT and SAT-TO-DIMACS
Filters to convert between DIMACS format for SAT problems and the symbolic semant
SATO
My implementation of Algorithm 7.2.2.2A (very basic SAT solver)
SATOW
My implementation of Algorithm 7.2.2.2B (teeny tiny SAT solver)
SAT8
My implementation of Algorithm 7.2.2.2W (WalkSAT)
SAT9
My implementation of Algorithm 7.2.2.2S (survey propagation SAT solver)
SATI10
My implementation of Algorithm 7.2.2.2D (Davis-Putnam SAT solver)
SATI1
My implementation of Algorithm 7.2.2.2L (lookahead 3SAT solver)
SATIIK
Change file to adapt SAT11 to clauses of arbitrary length
SATI12 and the companion program SAT12-ERP
My implementation of a simple preprocessor for SAT
SATI3
My implementation of Algorithm 7.2.2.2C (conflict-driven clause learning SAT solver)
SAT-LIFE
Various programs to formulate Game of Life problems as SAT problems (July 2013)

SATexamples
Programs for various examples of SAT in Section 7.2.2.2 of TAOCP; also more than al

= N www.labri.fr/perso/lsimon/glucose/

@ Laurent Simon & Glucose & Pu

Y D. Knuth and

Glucose
Among the short list of programs of Prof. 3}
Don Knuth, you may want to take a deep :er-
look at the & SAT13.w, his CDCL '
implementation. Very interesting and
insightful. With glucose-techniques
inside!

|1 fmv.jku.at/picosat/ m

Solvers

file. The previous release 951 is a
cleaned-up version after incorporating
comments by Donald Knuth.

Back to binary Waerden sequences!

Recall

integers j and k: Ifn is sufficiently large, every binary sequence ...z, contains
either j equally spaced (s or k equally spaced 1s. The smallest such n is denoted

Back to binary Waerden sequences!

Recall

integers j and k: If n is sufficient] v Ia;ge, every hinary sequence rl e T contains
either j equally spaced (s or k equally spaced 1s. The smallest such n is denoted

Boolean formula satisfiable iff 3 n-bit sequence with no j equally spaced
Os and not k equally spaced 1s.

Let us accordingly define the following set of clauses when j,k,n > 0:
waerden (§,k;n) = {(z; V Tira VeV Ei oya) | 1<i<n—(j-1)d,d>1}
U {(.‘i'.l v J_TH_d AR :Ei+(l'.—l)d) | 1 S i S n— (k—l)d, d 2 1}. (10)

Back to binary Waerden sequences!

Recall

integers j and k: If n is sufficient] v Ia;ge, every hinary sequence rl e T contains
either j equally spaced (s or k equally spaced 1s. The smallest such n is denoted

Boolean formula satisfiable iff 3 n-bit sequence with no j equally spaced
Os and not k equally spaced 1s.

Let us accordingly define the following set of clauses when j,k,n > 0:
waerden (§,k;n) = {(z; V Tira VeV Ei oya) | 1<i<n—(j-1)d,d>1}
U {(.‘i'.l v J_TH_d AR :Ei+(l'.—l)d) | 1 S i S n— (k—l)d, d 2 1}. (10)

The 32 clauses in (g) are waerden(3,3;9); and in general waerden(j, k;n) is an
appealing instance of SAT, satisfiable if and only if n < W (5, k).

It’s obvious that W(1,%) = k and W(2, k) = 2k — [k even]; but when j and &
exceed 2 the numbers W (j, k) are quite mysterious. We've seen that W(3,3) = 9,
and the following nontrivial values are currently known:

k 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19
W(3,k)= 9 18 22 32 46 58 77 97 114 135 160 186 218 238 279 312 349
W(4,k)=18 35 55 73 109146309 « + - =« = =+ =+ 1 ¢ 1
W(5,k) =22 55 178 206 260 : « =« =+ : * ¢ * ¢ 1 ¢ 1
W’(ﬁ, k) = 32 73 206 1132 7 T T ? 7 7 7 7 7 ? T ? ?

Exact Cover

Given a 0 — 1 matrix, find a selection of the rows that has exactly one 1

in each column.
1 2 3 4 5 & T

Langford pairing

A permutation of 1,1,2,2,3,3, ..., n, n so that the two ks are k “slots”
apart.

Langford pairing

A permutation of 1,1,2,2,3,3, ..., n, n so that the two ks are k “slots”

apart.
100010100000

100001010000
100000101000
100000010100
100000001010
100000000101
010010010000
010001001000

N
=
S

Express as exact

cover. Find a selec-

i f th that 010000100100
lon ot the rows tha 010000010010

has exactly one 1 in 010000001001
each column. 001010001000
001001000100
001000100010
001000010001 T
000110000100 41....1..
000101000010 4.1....1.
000100100001 4..1....1

NN DNDNDN
o
-

Exact Covering as SAT problem

Assign y; to row i. Obtain conditions:

v

Columnl: i+ yo+ys+ya+ys+y=1
Column 2: yv+ys+¥o+yi0+y11 =1

v

Column5: y1 +yr+yio+yis =1
Column 6: yo+yg+y13+ 7 =1

v

v

Column 12: yg+y11 + yis +y1is =1

v

e

NN NN

Exact Covering as SAT problem

Assign y; to row i. Obtain conditions:

v

Columnl: i+ yo+ys+ya+ys+y=1
Column 2: yv+ys+¥o+yi0+y11 =1

v

Column5: y1 +yr+yio+yis =1
Column 6: yo+yg+y13+ 7 =1

v

v

» Column 12: yg+y11 +yis +y1s =1

Express symmetric function

51(}/17)/27}’3,)’4,)/5,)/6) =
Vi +y2+y3+ya+ys+ye =1] in CNF.

e

NN NN

Exact Covering as SAT problem

Assign y; to row i. Obtain conditions:

1 1.1.....
» Columnl: 1 +y, +ys+ya+ys+ys =1 1 .1.1.
» Column 2: y7—|—y8+y9+y10+y11:1 1 1.1.

1 G101

1 1.1.

> Column5: yi +y7+y12o+y16 =1 . 11
> Column 6: yo +ys+y13+y17 =1 2 1..1.
2 1..1

> Column 12: yg+y11 +yis +y1s =1 i 1i'1i

Express symmetric function 2 1.1

51(}/17)/27}’3’)’4’)’5,)’6) = 31...1..
1 +y2+ys+ya+ys+ys=1] in CNF. 3.1...1

One of the simplest ways to express the symmetric Boolean function S; as 3..1...1

an AND of ORs is to use1+(’2’] clauses: 3...1...1

41....1..

Si(un,.cp) = VeV A N\ @ v (13) 4.4....1.

1<j<ksr Ly

“At least one of the y’s is true, but not two.” Then (12) becomes, in shorthand,

Coloring a graph. The classical problem of coloring a graph with at most d
colors is another rich source of benchmark examples for SAT solvers. If the graph
has n vertices V, we can introduce nd variables v;, forv € V and 1 < j < d,
signifying that v has color j; the resulting clauses are quite simple:

Coloring a graph. The classical problem of coloring a graph with at most d
colors is another rich source of benchmark examples for SAT solvers. If the graph
has n vertices V, we can introduce nd variables v;, forv € V and 1 < j < d,
signifying that v has color j; the resulting clauses are quite simple:

(i Voo V---Vuy) for v e V (“every vertex has at least one color”); (15)
(a; Vo) foru—ru, 1 <j < d (“adjacent vertices have different colors”). (16)

Coloring a graph. The classical problem of coloring a graph with at most d
colors is another rich source of benchmark examples for SAT solvers. If the graph
has n vertices V, we can introduce nd variables v;, forv € V and 1 < j < d,
signifying that v has color j; the resulting clauses are quite simple:

(i Voo V---Vuy) for v e V (“every vertex has at least one color”); (15)
(a; Vo) foru—ru, 1 <j < d (“adjacent vertices have different colors”). (16)

We could also add n(g) additional so-called ezxclusion clauses

(7: vo;) forveV, 1 <i<j<d (“every vertex has at most one color”); (17)

but they’re optional, because vertices with more than one color are harmless.

Factoring integers. Next on our agenda is a family of SAT instances with quite
a different flavor. Given an (m + n)-bit binary integer 2 = (Zm+n ...2221)2, do
there exist integers & = (T, ...71)2 and y = (Yn ...y1)2 such that z = z x y?
For example, if m = 2 and n = 3, we want to invert the binary multiplication

Ysy2lh _
X T2 Z1 : a b
Qs as (agazay)s = (yaya1n)2 X o1 (c122)2 _ az + 61
b3 ba by (63 by bl)z = (.'Jayzyl)z X I (c2z3}2 =a3+ 0 +a (22)
_— ([’324)2 = hg + Cq
C3C2 C1

_— Zr = C3
Z5 T4 32 1

when the z bits are given. This problem is satisfiable when z = 21 = (10101)5,
in the sense that suitable binary values @1, 2, ¥1, Y2, Y3, @1, G2, a3, b1, ba, bs, €1,
ca, cg do satisfy these equations. But it’s unsatisfiable when z = 19 = (10011),.

Factoring integers. Next on our agenda is a family of SAT instances with quite
a different flavor. Given an (m + n)-bit binary integer 2 = (Zm+n ...2221)2, do
there exist integers & = (T, ...71)2 and y = (Yn ...y1)2 such that z = z x y?
For example, if m = 2 and n = 3, we want to invert the binary multiplication

Ysl2tn

X T2 Z1 i a b
Qs as (agazay)s = (yaya1n)2 X o1 (c122)2 _ az + 61

b3 ba by (63 by bl)z = (.'Jayzyl)z X I (c2z3}2 =a3+ 0 +a (22)
CQW (!3324)2 = bg + Cq

_— Zr = C3
Z5 T4 32 1

when the z bits are given. This problem is satisfiable when z = 21 = (10101)5,

in the sense that suitable binary values @1, 2, ¥1, Y2, Y3, @1, G2, a3, b1, ba, bs, €1,
ca, cg do satisfy these equations. But it’s unsatisfiable when z = 19 = (10011),.

Express as a Boolean Chain (Section 7.1.2) ...

One such chain, if we identify a; with z; and e3 with 25, is

F41 <—3:1Ay1, bli—.’l’:gf\yl, Zg(—ﬂ.g(Dbl, 5(—&3(Db2, 23(—8(1)(.’]_, 2'4(—,)3(5)82,
a9 T1N\Y2, bg{—ﬂ’:z/\yz, C](—ﬂ.gf\bl, p(—ﬂ.gf\b'z, g—sNcy, Z5(-b3/\(.‘2,
azez1Ays, byezaAys, c24-pVa, (23)

using a “full adder” to compute c2zz2 and “half adders” to compute c122 and c324

Express Boolean Chain in CNF using Tseytin encoding.

One such chain, if we identify a, with z; and e3 with 25, is

1 (—ﬂ':]f\yl, bl'(—.'l’:zf\yl, Zzhﬂz(Dbl, Sﬁﬂg(Dbz, 23(—5‘@)&’1, Z4<—b3(5)!.’2,
a9 —x1 N2, 624—3:3/\3;2, Cli—ﬂzf\bl, p(—ﬂg.ﬁ'\bg, g—sAcy, Z5<—b31'\(.‘2,
ag+r1AYz, by xaAYa, capVy, (23}

using a “full adder” to compute czz3 and “half adders” to compute ¢122 and c324

t + uAv becomes (uVEA(@VEA(@VIVLE);
t « uV v becomes (BVE)A(TVE)A(uVoVi); (24)
t « u@®v becomes (AVVVEHA(uVIVEIA(uVoVEA(@VDVIE).

(z1VE)A ([VI A (@ VI V2 A -A(baVEaV Zg) A(baVEs)A(caVEs) A(bs VEa Vzs)

Express Boolean Chain in CNF using Tseytin encoding.
One such chain, if we identify a, with z; and e3 with 25, is

41 (—ﬂ':]f\yl, bl'(—ﬂ’:zf\yl, Zzhﬂz(Dbl, S(—ﬂg(Dbg, 23(—5'([)(.’1, Z4(—b3(5)!.’2,
a9 —x1 N2, 624—3:3/\3;2, Cli—ﬂzf\bl, p(—ﬂg.ﬁ'\bg, g—sAcy, Z5<—b31'\(.‘2,
c24-pVg, (23)

azg+T1AY3, by z2AYs,
using a “full adder” to compute czz3 and “half adders” to compute ¢122 and c324

t + uAv becomes (uVEA(@VEA(@VIVLE);
t + uV v becomes (BVE) A (TVE)A(uVoVi);
t « u@®v becomes (AVVVEHA(uVIVEIA(uVoVEA(@VDVIE).

(z1VE)A ([VI A (@ VI V2 A -A(baVEaV Zg) A(baVEs)A(caVEs) A(bs VEa Vzs)

(24)

How do we obtain a CNF formula satisfiable iff z = (10101), can be

factored into x and y?

Guess that Boolean function!

.,xn) is an unknown Boolean function that evaluates to 1 or 0

Fx1, %0,
on the tabulated points.

VALUES TAKEN ON BY AN UNKNOWN FUNCTION

Cases where f(z) =0

Cases where f(z) =1

=
]
C)

—FoO OO O S
o~~~ ~~—~o20
L=l el e e e
oMo~ ~NoC-~o
oo OoOOoOom oo
o000 0

loococRococOooHO~
A A A SO A S

ERE L PR LT P T re

T3

= E=RR=R =R
OO 000 O~
HO O - —-,—-D D
S O - OO0
NN OO o~
[l N B B R R
oo~ —~00
HOoOESNOoOOoO =D
S0 HMOHMN~N~N000
O D - DD -
SO0~ D -~
oSO O

R
co~HocOoOoo M~
—OoORNO~NOO OO
o C oS HHS—
HOOOM™M™™~OoO~OoO
-k =

IHoco—-~ococoo—~o-
—oo-A-o-ASooo-

T BT gB TR EGLy By T

coococococoooo-
CHOCOO O~
== R =R =R =]
OO OO O
—oococoHHooH~
cCHooRoooOH -~
=R =R R ==
R R R—R =N~]
coocococo—~o000C
o--o-oco-ooo
HO RO OO~
Rk E=E=E=EaE=Rr =]

[=R=R]
cocooo
-
=R
=R R R=1
oo
- o -
[=T R =]
SRR N=R=]
=R R]
oo
=R R=N=1
-
= =
coco-~o
CoOm-D
- e
oo o
[=R=RC R
[=R=]

-
—oo-o
= =R=1
co-o -
—ooo—
oo -S
[=F=N=T
cCoo -
—~ococoo
- - o
cococo~
- -
oo
——o oo
co~oo
oo -o
Do - D
—oo~o
oo -
o~ocoo

almost immediately that a very simple formula is consistent with all of the data:

(27)

V 2gF13%15 V TgT10F12-

Z6T10T12

v

2Z3T10

-:’-’520) =T

fzy,.

Guess that Boolean function!

.,xn) is an unknown Boolean function that evaluates to 1 or 0

Fx1, %0,
on the tabulated points.

VALUES TAKEN ON BY AN UNKNOWN FUNCTION

Cases where f(z) =0

Cases where f(z) =1

=
]
C)

—FoO OO O S
o~~~ ~~—~o20
L=l el e e e
oMo~ ~NoC-~o
oo OoOOoOom oo
o000 0

loococRococOooHO~
A A A SO A S

ERE L PR LT P T re

T3

= E=RR=R =R
OO 000 O~
HO O - —-,—-D D
S O - OO0
NN OO o~
[l N B B R R
oo~ —~00
HOoOESNOoOOoO =D
S0 HMOHMN~N~N000
O D - DD -
SO0~ D -~
oSO O

R
co~HocOoOoo M~
—OoORNO~NOO OO
o C oS HHS—
HOOOM™M™™~OoO~OoO
-k =

IHoco—-~ococoo—~o-
—oo-A-o-ASooo-

T BT gB TR EGLy By T

coococococoooo-
CHOCOO O~
== R =R =R =]
OO OO O
—oococoHHooH~
cCHooRoooOH -~
=R =R R ==
R R R—R =N~]
coocococo—~o000C
o--o-oco-ooo
HO RO OO~
Rk E=E=E=EaE=Rr =]

[=R=R]
cocooo
-
=R
=R R R=1
oo
- o -
[=T R =]
SRR N=R=]
=R R]
oo
=R R=N=1
-
= =
coco-~o
CoOm-D
- e
oo o
[=R=RC R
[=R=]

-
—oo-o
= =R=1
co-o -
—ooo—
oo -S
[=F=N=T
cCoo -
—~ococoo
- - o
cococo~
- -
oo
——o oo
co~oo
oo -o
Do - D
—oo~o
oo -
o~ocoo

almost immediately that a very simple formula is consistent with all of the data:

(27)

V 2gF13%15 V TgT10F12-

Z6T10T12

v

2Z3T10

-:’-’520) =T

fzy, .
Problem: find a DNF formula on M terms that agrees with the tabulated

data.

This formula was discovered by constructing clauses in 2MN variables p; ;
and g;j for 1 <i < M and 1 < j < N, where M is the maximum number of
terms allowed in the DNF (here M = 4) and where

pi,j = [term i contains z;], gi; = [term i contains Z;]. (28)

If the function is constrained to equal 1 at P specified points, we also use auxiliary
variables z; ; for 1 <i < M and 1 < k < P, one for each term at every such point.

This formula was discovered by constructing clauses in 2MN variables p; ;
and g;j for 1 <i < M and 1 < j < N, where M is the maximum number of
terms allowed in the DNF (here M = 4) and where

pi,j = [term i contains z;], gi; = [term i contains Z;]. (28)

If the function is constrained to equal 1 at P specified points, we also use auxiliary
variables z; ; for 1 <i < M and 1 < k < P, one for each term at every such point.

Table 2 says that f(1,1,0,0,...,1) = 1, and we can capture this specification
by constructing the clause
(21__1 Vzea1 VeV ZM_J) (29)
together with the clauses

(ZiaV@ia) AMZiaV3i2) AZiaVPig) ANMZiaVPia) A+ A(Zia1Vdi20) (30)

for 1 <1< M. Translation: (29) says that at least one of the terms in the DNF
must evaluate to true; and (30) says that, if term ¢ is true at the point 1100...1,
it cannot contain Z; or F, Oor T3 OF X4 OT - -- OT Fap.

This formula was discovered by constructing clauses in 2MN variables p; ;
and g;j for 1 <i < M and 1 < j < N, where M is the maximum number of
terms allowed in the DNF (here M = 4) and where

pi,j = [term i contains z;], gi; = [term i contains Z;]. (28)

If the function is constrained to equal 1 at P specified points, we also use auxiliary
variables z; ; for 1 <i < M and 1 < k < P, one for each term at every such point.

Table 2 says that f(1,1,0,0,...,1) = 1, and we can capture this specification
by constructing the clause
(21__1 Vzea1 VeV ZM_J) (29)
together with the clauses

(ZiaV@ia) AMZiaV3i2) AZiaVPig) ANMZiaVPia) A+ A(Zia1Vdi20) (30)

for 1 <1< M. Translation: (29) says that at least one of the terms in the DNF
must evaluate to true; and (30) says that, if term ¢ is true at the point 1100...1,
it cannot contain Z; or F, Oor T3 OF X4 OT - -- OT Fap.

Table 2 also tells us that f(1,0,1,0,...,1) = 0. This specification corre-
sponds to the clauses

(gia VPi2VaiaVpiaVe-Vdin) (31)

for 1 <i < M. (Each term of the DNF must be zero at the given point; thus
either #; or @y or T3 or x4 Or - - Or Tz must be present for each value of i.)

