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Abstract— Sensing instrumental gestures is a common task
in interactive electroacoustic music performances. The sensed
gestures can then be mapped to sounds, synthesis algorithms,
visuals etc. Two of the most common approaches for acquiring
these gestures are 1) Hybrid Instruments which are “traditional”
musical instruments enhanced with sensors that directly detect
gestures 2) Indirect Acquisition in which the only measurement
is the acoustic signal and signal processing techniques are used to
acquire the gestures. Hybrid instruments require modification of
existing instruments which is frequently undesirable. However
they provide relatively straightforward and reliable measuring
capability. On the other hand, indirect acquisition approaches
typically require sophisticated signal processing and possibly
machine learning algorithms in order to extract the relevant
information from the audio signals. In this paper the idea of
using direct sensors to train a machine learning model for
indirect acquisition is explored. This approach has some nice
advantages, mainly: 1) large amounts of training data can be
collected with minimum effort 2) once the indirect acquisition
system is trained no sensors or modifications to the playing
instrument are required. Case studies described in paper include
1) strike position on a snare drum 2) strum direction on a sitar.

I. INTRODUCTION

Throughout history musical instruments have been some
of the best examples of artifacts designed for interaction. In
recent years a combination of cheaper sensors, more powerful
computers and rapid prototyping software have resulted in
a plethora of interactive electroacoustic music performances
and installations. In many of these performances, traditional
acoustic instruments are blended with computer generated
sounds and visuals. Automatically sensing gestures is fre-
quently desired in such interactive multimedia performances.

There are two main approaches to sensing instrumental ges-
tures. In direct acquisition, traditional acoustical instruments
are extended/modified with a variety of sensors such as force
sensing resistors (FSR), and accelerometers. The purpose of
these sensors is to measure various aspects of the gestures of
the performers interacting with their instruments. A variety
of such “hyper” instruments have been proposed. However,
there are many pitfalls in creating such sensor-based controller
systems. Purchasing microcontrollers and certain sensors can
be expensive. The massive tangle of wires interconnecting one
unit to the next can get failure-prone. Things that can go
wrong include: simple analog circuitry break down, or sensors

wearing out right before a performance forcing musicians to
carry a soldering iron along with their tuning fork. The biggest
problem with hyper instruments, is that there usually is only
one version, and the builder is the only one that can benefit
from the data acquired and use the instrument in performance.

These problems have motivated researchers to work on
indirect acquisition in which the musical instrument is not
modified in any way. The only input is provided by non-
invasive sensors typically one or more microphones. The
recorded audio then needs to be analyzed in order to measure
the various gestures. Probably the most common and familiar
example of indirect acquisition is the use of automatic pitch
detectors to turn monophonic acoustic instruments into MIDI
(Music Instrument Digital Interface) instruments. In most
cases indirect acquisition doesn’t directly capture the intended
measurement and the signal needs to be analyzed to extract
the information. In most cases this analysis is achieved by
using real-time signal processing techniques. More recently an
additional stage of supervised machine learning has been uti-
lized in order to “train” the information extraction algorithm.
The disadvantage of indirect acquisition is the significant
effort required to develop the signal processing algorithms.
In addition, if machine learning is utilized the training of the
system can be time consuming and labor intensive.

The main problem addressed in this paper is the efficient
and effective construction of indirect acquisition systems for
musical instruments in the context of interactive media. Our
proposed solution is based on the idea of using direct sensors
to train machine learning models that predict the direct sensor
outputs from acoustical data. Once these indirect models have
been trained and evaluated, they can be used as “virtual” sen-
sors in place of the direct sensors. This approach is motivated
by ideas in multimodal data fusion with the slight twist that
in our case the data fusion is only used during the learning
phase. We believe that the idea of using direct sensors to learn
indirect acquisition can be applied to other area of multimodal
interaction in addition to musical instruments.

This approach of using direct sensors to “learn” indirect ac-
quisition models has some nice characteristics. Large amounts
of training data can be collected with minimum effort just by
playing the enhanced instrument with the sensors. Once the
system is trained and provided the accuracy and performance



of the learned “virtual” sensor is satisfactory there is no need
for direct sensors or modifications to the instrument.

The traditional use of machine learning in audio analysis
has been in classification where the output of the system an
ordinal value (for example the instrument name). As a first
case study of our proposed method we describe a system
for classifying percussive gestures using indirect acquisition.
More specifically the strike position of a stick on a snare
drum is automatically inferred from the audio recording. A
radio drum controller is used as the direct sensor in order to
train the indirect acquisition. In addition, we explore regression
which refers to machine learning systems where the output is
a continuous variable. One of the challenges in regression is
obtaining large amounts of data for training which is much
easier using our proposed approach. In our experiments, we
use audio-based feature extraction with synchronized contin-
uous sensor data to train a “virtual” sensor using machine
learning. More specifically we describe experiments using the
Electronic Sitar (ESitar), a digitally enhanced sensor based
controller modeled after the traditional North Indian sitar.

II. BACKGROUND

The use of sensors to gather gestural data from a musician
has been used as an aid in the creation of real-time computer
music performance. In the last few years the New Interfaces
for Musical Expression (NIME) conference has been the main
forum for advances in that area. Some representative examples
of such systems are: the Hypercello [1], the digitized Japanese
drum Aobachi [2], and the E-Sitar [3]. All These instruments
still function as acoustical instruments but are enhanced with
a variety of direct sensors to capture the gestures.

In addition, there has been some research using machine
learning techniques [4] to classify specific gestures based on
audio feature analysis. The extraction of control features from
the timbre space of the clarinet is explored in [5]. Deriving
gesture data from acoustic analysis of a guitar performance is
explored in [6]–[8]. An important influence for our research
is the concept of indirect acquisition of instrumental gesture
described in [8]. Gesture extraction from drums is explored in
[9]–[11]. The proposed algorithms rely on signal processing
possibly followed by machine learning to extract information.
Typically the information is categorical in nature for example
the type of drum sound played (for example snare, bass drum
or cymbal). In such approaches a large number of drum sounds
are collected, labeled manually, and then used with audio
feature extraction to train machine learning models.

In this paper, we address the challenge of collecting large
amounts of training data without needing to manually label
recordings. Direct sensors are used to automatically annotate
the recordings. Once the indirect acquisition method has
achieved satisfactory performance the direct sensors can be
discarded. Collecting large amounts of data becomes simply
playing the instrument. Most existing indirect acquisition
methods make categorical decisions (classification). Using
regression [12] it is possible to deal with continuous gestural
data in a machine learning framework. However training

regression models requires more data which is much easier
using the proposed approach rather than manual labeling.

III. AUDIO ANALYSIS

A. Audio-Based Feature Extraction

The feature set used in this paper is based on standard
features used in isolated tone musical instrument classification,
music and audio recognition. For the E-Sitar experiments it
consists of 4 features computed based on the Short Time
Fourier Transform (STFT) magnitude of the incoming audio
signal. It consists of the Spectral Centroid (defined as the
first moment of the magnitude spectrum), Rolloff and Flux
as well as RMS energy. More details about these features can
be found in [13]. The features are calculated using a short
time analysis window with duration 10-40 milliseconds. In
addition, the means and variances of the features over a larger
texture window (0.2-1.0 seconds) are computed resulting in
a feature set with 8 dimensions. The large texture window
captures the dynamic nature of spectral information over time
and it was a necessary addition to achieve any results in
mapping features to gestures. Ideally the size of the analysis
and texture windows should correspond as closely as possible
to the nature time resolution of the gesture we want to map. In
our experiments we have looked at how these parameters affect
the desired output. In addition, the range of values we explored
was determined empirically by inspecting the data acquired by
the sensors. For the snare drum experiments the analysis win-
dow is 40 msecs (no texture window) and the features used are
Centroid, Rolloff well as Mel-frequency Cepstral Coefficients
(MFCCs). A preprocessing step of silence removal and onset
detection ensure that features are only calculated once for each
drum hit. The analysis window is located so that it captures
most of the energy of the hit. The Marsyas 1 audio analysis
and synthesis framework is used for the feature extraction and
direct sensor acquisition and alignment with the audio features.

B. Regression and Classification

Classification refers to the prediction of discrete categorical
outputs from real-valued inputs. A variety of classifiers have
been proposed in the machine learning literature [4] with
different characteristics in respect to training speed, general-
ization, accuracy and complexity. The main goal of the paper is
to provide evidence to support the idea of using direct sensors
to train models. Therefore experimental results are provided
using a few representative classification methods.

Regression refers to the prediction of real-valued outputs
from real-valued inputs. Multivariate regression refers to pre-
dicting a single real-valued output from multiple real-valued
inputs. A classic example is predicting the height of a person
using their measure weight and age. There are a variety of
methods proposed in the machine learning [4] literature for
regression. For the experiments described in this paper, we
use linear regression where the output is formed as a linear
combination of the inputs with an additional constant factor.

1http://marsyas.sourceforge.net



Fig. 1. E-Sitar and thumb sensor

Linear regression is fast to compute and therefore useful for
doing repetitive experiments for exploring the parameter. We
also employ a more powerful back propagation neural network
[4] that can deal with non-linear combinations of the input
data. The neural network is slower to train but provides better
regression performance. Finally, the M5 prime decision tree
based regression algorithm was also used. The performance
of regression is measured by a correlation coefficient which
ranges from 0.0 to 1.0 where 1.0 indicates a perfect fit. In the
case of gestural control, there is significant amount of noise
and the sensor data doesn’t necessarily reflect directly the
gesture to be captured. Therefore, the correlation coefficient
can mainly be used as a relative performance measure between
different algorithms rather than an absolute indication of
audio-based gestural capturing. The automatically annotated
features and direct sensor labels are exported into the Weka 2

machine learning framework for training and evaluation.

IV. CASE STUDIES

A. ESitar

The ESitar was built with the goal of capturing a variety of
gestural input data. A more detailed description of audio-based
gesture extraction on the ESitar including monophonic pitch
detection can be found in [12]. A variety of different sensors
such as fret detection using a network of resistors are used
combined with an Atmel AVR ATMega16 microcontroller for
data acquisition. The data is sent out using the MIDI protocol.
In this paper we describe how to indirectly acquire the mizrab
pluck direction.

On the right index finger, a sitar player wears a ring like
plectrum, known as the mizrab. The right thumb, remains
securely on the edge of the dand (neck) as shown in Figure 1,
as the entire right hand gets pulled up and down over the main
seven strings, letting the mizrab strum. An upward stroke is
known as Dha and a downward stroke is known as Ra.

The direct sensor used to deduce the direction of a mizrab
stroke is a force sensing resistor (FSR), which is placed

2http://www.cs.waikato.ac.nz/ml/weka/

TABLE I

EFFECT OF ANALYSIS WINDOW SIZE.

Analysis Window Size 128 256 512

Correlation Coefficient 0.2795 0.3226 0.2414

TABLE II

EFFECT OF TEXTURE WINDOW SIZE (COLUMNS) AND REGRESSION

METHOD (ROWS).

10 20 30 40

Random Output 0.14 0.14 0.14 0.14

Linear Regression 0.28 0.33 0.28 0.27

Neural Network 0.27 0.45 0.37 0.43

M5’ Regression Method 0.28 0.39 0.37 0.37

directly under the right hand thumb, as shown in Figure 1. The
thumb never moves from this position while playing, however
the applied force varies based on the mizrab stroke direction.
A Dha stroke (upward stroke) produces more pressure on
the thumb than a Ra stroke (downward stroke). We send a
continuous stream of data from the FSR via MIDI, because this
data is rhythmically in time and can be used compositionally
for more than just deducing pluck direction. A vector of audio
features is extracted and the values of the FSR sensor are fused
and used to train the “virtual” sensor using a regression model.

Our first experiment was to analyze the effect of the analysis
window size used for audio feature extraction. Table I shows
the results. The texture size remained constant at 0.5 seconds
and linear regression was used. The correlation coefficient for
random inputs is 0.14. It is apparent based on the table that
an analysis window of length 256 (which corresponds to 10
milliseconds) achieves the best results. It can also be seen that
the results are significantly better than chance. We used this
window size for the next experiment.

The next experiment explores the effect of texture window
size and choice of regression method. Table II shows the
results. The rows correspond to regression methods and the
columns correspond to texture window sizes expressed in
number of analysis windows. For example, 40 corresponds to
40 windows of 256 samples at 22050 Hz sampling rate which
is approximately 0.5 seconds. To avoid overfitting we use a
percentage split where the first 50% of the audio and gesture
data recording is used to train the regression algorithm which
is then used to predict the second half of recorded data.

B. Snare Drum

The snare drum is a modern drum common to most drum
sets. Wire snares are attached to the bottom drumhead so that
when the drum is struck on the top the snares vibrate against
the drum, creating a distinctive timbre. Using a mechanism
it is possible to disengage the snares and stop their vibration
allowing the drum to have a more traditional timbre.



Fig. 2. Snare drum, radio drum stick, and microphone

TABLE III

PERCENTAGES OF CORRECTLY CLASSIFIED SNARE DRUM HITS

ZeroR NB MLP MLR SMO
Snares 53 92 91 91 92

No Snares 57 93 94 95 95
Improvisation 59 79 77 78 78

The third author completed a Masters thesis [14] on the
topic of indirect acquisition of snare drum gestures. In this
thesis, 1260 samples were collected with three drums and three
expert players. The process of collecting and processing the
training data took nearly a week of manual labor. Using the
method described in this paper the process took under an hour.
The direct sensor used for training is the Radio Drum [15]
which is based on capacitance sensors. It can detect the x,y,z
positions of two drum sticks in 3D space. This allowed us to
place the surface of the Radio Drum under a snare drum and
still be able to measure the stick position. For each hit the
radial position was measured and the hit was labeled as either
“edge” or “center” using thresholding. Audio features are also
extracted in real-time using input from a microphone. The
features and sensor measurements are then used for training
classifiers. The setup can be viewed in Figure 2.

Table III shows classification results using a variety of
classifiers. The Snares, No Snares rows are calculated using
approximately 1000 drum hits with the snares engaged/not
engaged. All the results are based on 10-fold cross-validation.
The trivial ZeroR classifier is used as a baseline. The following
classifiers are used: Naive Bayes (NB), Multi-Layer Perceptron
(MPL), Multinomial Logistic Regression (MLR), and Support
Vector trained using sequential minimal optimization (SMO).
The results are consistent between different classifier types
and show that indirect acquisition using audio-based features
trained using direct sensors is feasible. The Improvisation row
is calculated using 200 drum hits of an improvisation. Even
though the results are not as good as the cleaner previous rows
they demonstrate that any performance can potentially be used

as training data. A classically trained percussionist was used
for data collection and no pre-processing or post-processing
the classification results was performed.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the use of direct sensors to “train”
machine learning model based on audio feature extraction
for indirect acquisition. Once the model is trained and its
performance is satisfactory the direct sensors can be discarded.
That way large amounts of training data for machine learning
can be collected with minimum effort just by playing the
instrument. In addition, the learned indirect acquisition method
allows capturing of non-trivial gestures without modifications
to the instrument. We believe that the idea of using direct
sensors to train indirect acquisition methods can be applied to
other area of interactive media and data fusion.

There are many directions for future work. We are exploring
the use of additional audio-based features Linear Prediction
Coefficients (LPC) and sinusoidal analysis. We are also plan-
ning more extensive experiments with more instruments, play-
ers and desired gestures. Creating tools for further processing
the gesture data to reduce the noise and outliers is another
direction for future research. Another eventual goal is to use
these techniques for transcription of music performances.

REFERENCES

[1] T. Machover, “Hyperinstruments: A progress report,” MIT, Tech. Rep.,
1992.

[2] D. Young and I. Fujinaga, “Aobachi: A new interface for japanese
drumming,” in Proc. New Interfaces for Musical Expression (NIME),
Hamamatsu, Japan, 2004.

[3] A. Kapur, P. Davidson, P. Cook, P. Driessen, and A. Schloss, “Digitiz-
ing north indian performance,” in Proc. Inter. Computer Music Conf.
(ICMC), Miami, Florida, 2004.

[4] T. Mitchell, Machine Learning. Columbus, OH: McGraw Hill, 1997.
[5] E. B. Egozy, “Deriving musical control features from a real-time timbre

analysis of the clarinet,” Master’s thesis, Massachusetts Institute of
Technology, 1995.

[6] N. Orio, “The timbre space of the classical guitar and its relationship
with plucking techniques,” Int. Computer Music Conf. (ICMC), 1999.

[7] C. Traube and J. O. Smith, “Estimating the plucking point on a guitar
string,” Conference on Digital Auido Effects, 2000.

[8] C. Traube, P. Depalle, and M. Wanderley, “Indirect acquisition of instru-
mental gestures based on signal, physical and perceptual information.”
Proceedings of the Conference on New Musical Interfaces for Musical
Expression, pp. 42–7, 2003.

[9] F. Gouyon and P. Herrera, “Exploration of techniques for automatic
labeling of audio drum tracks’ instruments,” Proceedings of MOSART:
Workshop on Current Directions in Computer Music, p. [n.p.], 2001.
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