
for (i=0; i < n; i++) used[i]= 0;
for (end= n-1; end ≥ 0; end--)
{
 max_pos= -1; max= -1;

 for (u=0; u < n ; u++)
 {
 if (!used[u])
 {
 deg=0;
 for (i=0; < n; i++) deg+= A[u][i];
 if (deg > max) {max_pos= u; max= deg;}
 }
 }
 p[end]= max_pos; used[max_pos]=1;
}

A is an adjacency matrix.
How much time does this
algorithm take to sort the
vertices by degree? How
could you do it faster?

For the big problems, an O(n3) sorting
algorithm similar to this took 31 seconds on
the 2187 vertex football graph. We cannot
afford to be inefficient when we only have a
short time (in this case one second) to find a
dominating set for each graph.

I tested your heuristics using one second
per graph.

If the file had k graphs I set a total limit of
k+1 seconds for the cpu time.

in_football_1.txt has 6 graphs:

limit cputime 7
a.out 1 0 < ../../in_football_1.txt > of1

When I marked your creative approaches, I
edited some of the programs so they would
conform to specs.

I am not going to edit any future submissions.

Please test your programs very carefully
before you submit them.

Use the testing scripts I gave you and test
on all the input graphs.

A sample pseudo-random number generator:
static unsigned int seed = 5323;
unsigned int rand()
{
 seed = (8253729 * seed + 2396403);
 return seed % 32768;
}

If you generate some random numbers
starting with a given seed, then you start
again with the same seed it will generate the
same sequence of random numbers.

http://www.learncpp.com/cpp-tutorial/59-random-number-generation/

The timer clock tics very slowly compared to
how fast our programs run.
Here for example are some counts for the
first football problem:

Number of iterations per tick: 6845
Number of iterations per tick: 5117
Number of iterations per tick: 5874
Number of iterations per tick: 4918

If you reseed the random number generator
with the time at each iteration, for each block
you will have the same random permutation.

Here is the number of times I consider different
permutations
with and without reseeding on in_football_1.txt

It is even worse if you reseed it with the same
constant each trial as it means every permutation
will be the same.

Student heuristics performed badly compared
to mine when you did this even when I gave
you twice as much time as I had.

For future submissions:

DO NOT call srand.

Test your program to see how much better
your solutions are if you do not use srand.

There is a second problem with using srand.
If you have a bug it is nice if it is reproducible.
The clock probably will tick in between the
times you run the program. This will change the
permutations the program will run on and could
mean that you had a bug but cannot reproduce
the computation that was buggy.

If you want to choose a seed with a pseudo-
random number generator, you should do it only
once at the beginning of your computation.
But for this class, do not use srand.

Using dynamic memory allocation:

The one program using dynamic memory
allocation (new) was “Killed” on the C80

fullerenes and the queen graphs because
it ran out of memory.

Java does automatic garbage collection.
In C/C++ if you ask for memory without
freeing it when you are done you will
eventually run out of memory.

Using NMAX will avoid problems with memory
leaks.

Use
fflush(stdout);
each time you print some results.

If you do this and you run out of time you will
get credit for the problems you managed to
solve.

Otherwise, since the output is buffered, some
of the problem results may not be printed.

Your student number kxx will be on your feedback sheet.
k1= best known solution. k2= my implementation of Alg. 1
(random permutation greedy). You should be able to match or
beat that.

Your score for each problem is:
n if your program fails to find a solution to a
problem of size n.

Otherwise it is your solution minus the k 1
solution.

Smaller scores are better.

Rank 1: Student 7 with score 79
Rank 2: Student 20 with score 87
Rank 3: Student 6 with score 142
Rank 4: Student 9 with score 152
Rank 5: Student 2 with score 156
Rank 5: Student 16 with score 156
===============================
Rank 7: Student 12 with score 158
Rank 8: Student 17 with score 181
Rank 9: Student 11 with score 192
Rank 10: Student 3 with score 405
Rank 11: Student 4 with score 739
Rank 12: Student 5 with score 785
Rank 12: Student 8 with score 785
Rank 14: Student 10 with score 1711
Rank 15: Student 13 with score 2024
Rank 16: Student 14 with score 2050
Rank 17: Student 15 with score 2236
Rank 18: Student 19 with score 2249
Rank 19: Student 18 with score 2892

Student 2 is my
implementation of
Algorithm 1 (the
random permutation
greedy algorithm).

Algorithm 1: no editing done to fix bugs.
Input file football_1.txt

Tail end of C8- results for Algorithm 1:

Rank 1: Student 16 with score 34
Rank 2: Student 13 with score 40
Rank 3: Student 2 with score 42
=====================================
Rank 4: Student 6 with score 46
Rank 4: Student 15 with score 46
Rank 6: Student 5 with score 55
Rank 7: Student 11 with score 111
Rank 8: Student 9 with score 124
Rank 9: Student 10 with score 173
Rank 10: Student 3 with score 174
Rank 11: Student 17 with score 177
Rank 12: Student 14 with score 182
Rank 13: Student 7 with score 2079
Rank 14: Student 4 with score 2565
Rank 15: Student 8 with score 2640
Rank 15: Student 12 with score 2640
Rank 15: Student 18 with score 2640

