
Final exam tutorial:
Thursday Dec. 8 at 12:30pm, Room TBA.

Please remember to fill out your Course
Experience Surveys.

I would love to have feedback from
everybody!

Note: most journal papers are accessible electronically
for free through the UVic library.

Material copied from:

Introduction to the tactic:

Glover, F. 1986. Future Paths for Integer
Programming and Links to Artificial Intelligence.
Computers and Operations Research. Vol. 13, pp.
533-549.

Hansen, P. 1986. The Steepest Ascent Mildest
Descent Heuristic for Combinatorial Programming.
Congress on Numerical Methods in Combinatorial
Optimization, Capri, Italy.

Neighbourhood search algorithms initially
impose a neighbourhood structure on the set of
configurations X. Starting at a (possibly
randomly) chosen element x0 the algorithm
proceeds by repeatedly moving from a
configuration to one of its neighbours, with the
ultimate aim of finding a configuration of low
cost.

Hill climbing and simulated annealing are two
popular neighbourhood search techniques that
have had some success in combinatorial
problems. Tabu search is a more recent
technique.

Tabu – the Polynesian concept of
something prohibited from being
mentioned or touched.

Tabu search algorithm: a heuristic
approach that avoids cycling back to local
optima

Tabu Algorithm: Start at any x0 .
At step i choose xi as a neighbour of xi-1

that minimises c(xi) subject to the constraint
that the move from xi-1 to xi does not `undo' any
of the t most recent moves. Finish after a
number of iterations, returning the xi which
gave the least c(xi).

The tabu list prevents an immediate return to a
local minimum, and with luck the search is
forced out of the region of attraction of that
local minimum.

Maintains a current solution S which is any
subset of V(G) (either a dominating set or a
partial dominating set.

Each set S has a cost c(S)= |S| + number of
vertices not dominated by S.

Note that S does not have to be a dominating
set but S together with the undominated
vertices is a dominating set. The reason for not
constraining S to be a dominating set is that
this allows paths between small dominating sets
which might otherwise need to go via a much
larger dominating set.

For a solution S, the neighbouring
solutions are obtained by either deleting a
vertex in S or adding a vertex not in S.

Two moves are defined to undo each other
if one is addition and the other deletion
of the same vertex.

If there are several equally good optimal
moves a random choice is made.

For the Tabu list, Rowan and Gordon
used Tabu list lengths of between 5 and 8
for most of the runs. The example I give
has Tabu list size 3.

A very simple aspiration criterion
was also used: if an otherwise tabu move
gave an improvement on the best solution
found to date, then it was performed
anyway.

 Trial 0: S is the empty set
 0: 9
 1: 8
 2: 8
 3: 8
 4: 7
 5: 8
 6: 10
 7: 8
 8: 8
 9: 9
 10: 8
Minimum cost is 7 for vertex 4

Trial 1: S= 4
Tabu: 4 -1 -1

Costs of the vertices:
 0: 5
 1: 5
 2: 5
 3: 6
 5: 7
 6: 7
 7: 7
 8: 6
 9: 6
 10: 6

Minimum cost is 5
for vertex 0

Trial 2: S= 0 4
Tabu: 4 0 -1
Costs of the vertices:
 1: 6
 2: 6
 3: 6
 5: 5
 6: 5
 7: 5
 8: 4
 9: 4
 10: 4
Minimum cost is 4 for vertex 8

Trial 3: S= 0 4 8
Tabu: 4 0 8
Costs of the vertices:
 1: 5
 2: 5
 3: 5
 5: 4
 6: 4
 7: 5
 9: 5
 10: 5

Smaller dominating set: 0 4 5 8

Minimum cost is 4
for vertex 5

Trial 4: S= 0 4 5 8
Tabu: 5 0 8
Costs of the vertices:
 1: 5
 2: 5
 3: 5
 4: 4
 6: 5
 7: 5
 9: 5
 10: 5

Minimum cost is 4 for vertex 4

Trial 5: S= 0 5 8
Tabu: 5 4 8
Costs of the vertices:
 0: 6
 1: 4
 2: 4
 3: 4
 6: 5
 7: 5
 9: 5
 10: 5
Minimum cost is 4 for vertex 1

Trial 6: S= 0 1 5 8
Tabu: 5 4 1
Costs of the vertices:
 0: 3
 2: 5
 3: 5
 6: 5
 7: 5
 8: 6
 9: 5
 10: 5
Minimum cost is 3 for vertex 0
Smaller dominating set: 1 5 8

Trial 7: S= 1 5 8
Tabu: 0 4 1
Costs of the vertices:
 2: 4
 3: 4
 5: 5
 6: 4
 7: 4
 8: 5
 9: 4
 10: 4
Minimum cost is 4 for vertex 7
(vertex number chosen randomly from
those of min cost).

Choose in advance the number of
iterations to do.

Or do this for a given amount of time.

Or do this until it has been a long time
with no improvement to the optimal
solution and then maybe randomly restart.

You can start with any set S.
Maybe S= V(G) is an interesting choice?

