
Final exam tutorial: 
Thursday Dec. 8 at 12:30pm, Room TBA. 
 
 
Please remember to fill out your Course 
Experience Surveys. 
 
I would love to have feedback from  
everybody! 



Note: most journal papers are accessible electronically 
for free through the UVic library. 

Material copied from: 



Introduction to the tactic: 
 
Glover, F. 1986.  Future Paths for Integer 
Programming and Links to Artificial Intelligence. 
Computers and Operations Research. Vol. 13, pp. 
533-549.  
 
Hansen, P. 1986.  The Steepest Ascent Mildest 
Descent Heuristic for Combinatorial Programming.  
Congress on Numerical Methods in Combinatorial 
Optimization, Capri, Italy. 

 



Neighbourhood search algorithms initially 
impose a neighbourhood structure on the set of 
configurations X. Starting at a (possibly 
randomly) chosen element x0  the algorithm 
proceeds by repeatedly moving from a 
configuration to one of its neighbours, with the 
ultimate aim of finding a configuration of low 
cost.  
 
Hill climbing and simulated annealing are two 
popular neighbourhood search techniques that 
have had some success in combinatorial 
problems. Tabu search is a more recent 
technique. 



 

Tabu – the Polynesian concept of 
something prohibited from being 
mentioned or touched. 
 
Tabu search algorithm: a heuristic 
approach that avoids cycling back to local 
optima 



 

Tabu Algorithm:  Start at any x0 .  
At step i choose xi as a neighbour of xi-1 

that minimises c(xi) subject to the constraint 
that the move from xi-1 to xi does not `undo' any 
of the t most recent moves. Finish after a 
number of iterations, returning the xi which 
gave the least c(xi). 
 
The tabu list prevents an immediate return to a 
local minimum, and with luck the search is 
forced out of the region of attraction of that 
local minimum. 
 
 



Maintains a current solution S which is any 
subset of V(G) (either a dominating set or a 
partial dominating set. 
 
Each set S has a cost c(S)= |S| + number of 
vertices not dominated by S. 
 
Note that S does not have to be a dominating 
set but S together with the undominated 
vertices is a dominating set. The reason for not 
constraining  S to be a dominating set is that 
this allows paths between small dominating sets 
which might otherwise need to go via a much 
larger dominating set. 
 



For a solution S, the neighbouring 
solutions are obtained by either deleting a 
vertex in S or adding a vertex not in S. 
 
Two moves are defined to undo each other 
if one is addition and the other deletion 
of the same vertex. 
 
If there are several equally good optimal 
moves a random choice is made. 



For the Tabu list, Rowan and Gordon 
used Tabu list lengths of between 5 and 8 
for most of the runs. The example I give 
has Tabu list size 3. 
 
A very simple aspiration criterion 
was also used: if an otherwise tabu move 
gave an improvement on the best solution 
found to date, then it was performed 
anyway. 
 



  Trial 0: S is the empty set   
    0:   9 
  1:   8 
  2:   8 
  3:   8 
  4:   7 
  5:   8 
  6:  10 
  7:   8 
  8:   8 
  9:   9  
 10:   8 
Minimum cost is   7 for vertex   4 



Trial 1: S=  4 
Tabu:  4 -1 -1 
 
Costs of the vertices: 
  0:   5 
  1:   5 
  2:   5 
  3:   6 
  5:   7 
  6:   7 
  7:   7 
  8:   6 
  9:   6 
 10:   6 

Minimum cost is   5 
for vertex   0 



Trial   2: S=  0  4 
Tabu:  4  0 -1 
Costs of the vertices: 
  1:   6 
  2:   6 
  3:   6 
  5:   5 
  6:   5 
  7:   5 
  8:   4 
  9:   4 
 10:   4 
Minimum cost is   4 for vertex   8 



Trial   3: S=  0  4  8 
Tabu:  4  0  8 
Costs of the vertices: 
  1:   5 
  2:   5 
  3:   5 
  5:   4 
  6:   4 
  7:   5 
  9:   5 
 10:   5 
 
Smaller dominating set:  0  4  5  8 

Minimum cost is   4 
for vertex   5 



Trial   4: S=  0  4  5  8 
Tabu:  5  0  8 
Costs of the vertices: 
  1:   5 
  2:   5 
  3:   5 
  4:   4 
  6:   5 
  7:   5 
  9:   5 
 10:   5 
 
Minimum cost is   4 for vertex   4 
 



Trial   5: S=  0  5  8 
Tabu:  5  4  8 
Costs of the vertices: 
  0:   6 
  1:   4 
  2:   4 
  3:   4 
  6:   5 
  7:   5 
  9:   5 
 10:   5 
Minimum cost is   4 for vertex   1 



Trial  6: S=  0  1  5  8 
Tabu:  5  4  1 
Costs of the vertices: 
  0:   3 
  2:   5 
  3:   5 
  6:   5 
  7:   5 
  8:   6 
  9:   5 
 10:   5 
Minimum cost is   3 for vertex   0 
Smaller dominating set:  1  5  8 



Trial   7: S=  1  5  8 
Tabu:  0  4  1 
Costs of the vertices: 
  2:   4 
  3:   4 
  5:   5 
  6:   4 
  7:   4 
  8:   5 
  9:   4 
 10:   4 
Minimum cost is   4 for vertex   7 
(vertex number chosen randomly from 
those of min cost). 



 
 

Choose in advance the number of 
iterations to do. 
 
Or do this for a given amount of time. 
 
Or do this until it has been a long time 
with no improvement to the optimal 
solution and then maybe randomly restart. 
 
You can start with any set S. 
Maybe S= V(G) is an interesting choice? 


