Matching

Matching.

- Input: undirected graph $G=(V, E)$.
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

Slides designed by Kevin Wayne.

Bipartite Matching

Bipartite matching.

- Input: undirected, bipartite graph $G=(L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

Bipartite Matching

Bipartite matching.

- Input: undirected, bipartite graph $G=(L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

Bipartite Matching

Max flow formulation.

- Create digraph $G^{\prime}=\left(L \cup R \cup\{s, \dagger\}, E^{\prime}\right)$.
- Direct all edges from L to R, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in $G=$ value of max flow in G^{\prime}. Pf. \leq

- Given max matching M of cardinality k.
- Consider flow f that sends 1 unit along each of k paths.
- fis a flow, and has cardinality k. -

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in $G=$ value of max flow in G^{\prime}. Pf. \geq

- Let f be a max flow in G^{\prime} of value k.
- Integrality theorem $\Rightarrow k$ is integral and can assume f is $0-1$.
- Consider $M=$ set of edges from L to R with $f(e)=1$.
- each node in L and R participates in at most one edge in M
- $|M|=k:$ consider cut $(L \cup s, R \cup \dagger)$ -

Perfect Matching

Def. A matching $M \subseteq E$ is perfect if each node appears in exactly one edge in M.
Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

- Clearly we must have $|L|=|R|$.
- What other conditions are necessary?
- What conditions are sufficient?

Perfect Matching

Notation. Let S be a subset of nodes, and let $N(S)$ be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph $G=(L \cup R, E)$, has a perfect matching, then $|N(S)| \geq|S|$ for all subsets $S \subseteq L$.
Pf. Each node in S has to be matched to a different node in $N(S)$.

No perfect matching:
$S=\{2,4,5\}$
$N(S)=\left\{2^{\prime}, 5^{\prime}\right\}$.

R

Marriage Theorem

Marriage Theorem. [Frobenius 1917, Hall 1935] Let $G=(L \cup R, E)$ be a bipartite graph with $|L|=|R|$. Then, G has a perfect matching iff $|N(S)| \geq|S|$ for all subsets $S \subseteq L$.

Pf. \Rightarrow This was the previous observation.

No perfect matching:
$S=\{2,4,5\}$
$N(S)=\left\{2^{\prime}, 5^{\prime}\right\}$.

R

Ford-Fulkerson network flow algorithm:
Augment along any path from s to t at each step.
With integer flow values, the run-time is $O(m$ * $f)$
where f is the maximum flow in the network.
Edmonds-Karp has better performance depending only on n and m and not on the maximum flow amount.
It takes time $O\left(\mathrm{n} \mathrm{m}^{2}\right)$.
Each step using an $O(m)$ BFS to find an augmenting path. At least one edge e is saturated (has flow equal to its capacity). This edge e in the aux. graph increases its distance from the source.
The graph has m edges whose distances can range from 0 to $n-1$ from the source. Thus there is at most $n * m$ iterations.

Bipartite matching running time

Theorem. The Ford-Fulkerson algorithm solves the bipartite matching problem in $O(m n)$ time. The max. flow f is the size of a maximum matching so $f \leq n$. It takes $O(m)$ worst case time to find each augmenting path. Theorem. [Hopcroft-Karp 1973] The bipartite matching problem can be solved in $O\left(m n^{1 / 2}\right)$ time.

SIAM J. Comput.

Vol. 2, No. 4, December 1973

AN $n^{5 / 2}$ ALGORITHM FOR MAXIMUM MATCHINGS
 IN BIPARTITE GRAPHS*
 JOHN E. HOPCROFT \dagger AND RICHARD M. KARP \ddagger

[^0]
Nonbipartite matching

Nonbipartite matching. Given an undirected graph (not necessarily bipartite), find a matching of maximum cardinality.

- Structure of nonbipartite graphs is more complicated.
- But well-understood.
- Blossom algorithm: $O\left(n^{4}\right)$.
- Best known: $O\left(m n^{1 / 2}\right)$.
[Tutte-Berge, Edmonds-Galai]
[Edmonds 1965]
[Micali-Vazirani 1980, Vazirani 1994]

PATHS, TREES, AND FLOWERS

JACK EDMONDS

1. Introduction. A graph G for purposes here is a finite set of elements called vertices and a finite set of elements called edges such that each edge meets exactly two vertices, called the end-points of the edge. An edge is said to join its end-points.
A matching in G is a subset of its edges such that no two meet the same vertex. We describe an efficient algorithm for finding in a given graph a matcbing of maximum cardinality. This problem was posed and partly solved by C. Berge; see Sections 3.7 and 3.8.

COMBINATORICA
Aladénial Kiad 6 - Springer-Veriag
A THEORY OF ALTERNATING PATHS AND BLOSSOMS FOR PROVING CORRECTNESS OF THE $O(\sqrt{V} E)$ GENERAL GRAPH MAXIMUM MATCHING ALGORITHM

Historical significance (Jack Edmonds 1965)

2. Digression. An explanation is due on the use of the words "efficient algorithm." First, what I present is a conceptual description of an algorithm and not a particular formalized algorithm or "code."

For practical purposes computational details are vital. However, my purpose is only to show as attractively as I can that there is an efficient algorithm. According to the dictionary, "efficient" means "adequate in operation or performance." This is roughly the meaning I want-in the sense that it is conceivable for maximum matching to have no efficient algorithm. Perhaps a better word is "good."

I am claiming, as a mathematical result, the existence of a good algorithm for finding a maximum cardinality matching in a graph.

There is an obvious finite algorithm, but that algorithm increases in difficulty exponentially with the size of the graph. It is by no means obvious whether or not there exists an algorithm whose difficulty increases only algebraically with the size of the graph.

7.6 Disjoint Paths

Edge Disjoint Paths

Disjoint path problem. Given a digraph $G=(V, E)$ and two nodes s and t, find the max number of edge-disjoint s - \dagger paths.

Def. Two paths are edge-disjoint if they have no edge in common.
Ex: communication networks.

Edge Disjoint Paths

Disjoint path problem. Given a digraph $G=(V, E)$ and two nodes s and t, find the max number of edge-disjoint $s-\dagger$ paths.

Def. Two paths are edge-disjoint if they have no edge in common.
Ex: communication networks.

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s - \dagger paths equals max flow value. Pf. \leq

- Suppose there are k edge-disjoint paths $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}$.
- Set $f(e)=1$ if e participates in some path P_{i}; else set $f(e)=0$.
- Since paths are edge-disjoint, f is a flow of value k. -

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint $s-\dagger$ paths equals max flow value. Pf. \geq

- Suppose max flow value is k.
- Integrality theorem \Rightarrow there exists 0-1 flow f of value k.
- Consider edge (s, u) with $f(s, u)=1$.
- by conservation, there exists an edge (u, v) with $f(u, v)=1$
- continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths. -

Network Connectivity

Network connectivity. Given a digraph $G=(V, E)$ and two nodes s and t, find min number of edges whose removal disconnects \dagger from s.

Def. A set of edges $F \subseteq E$ disconnects \dagger from s if every s-t path uses at least one edge in F.

Edge Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s - \dagger paths is equal to the min number of edges whose removal disconnects \dagger from s.

Pf. \leq

- Suppose the removal of $F \subseteq E$ disconnects \dagger from s, and $|F|=k$.
- Every s-t path uses at least one edge in F. Hence, the number of edge-disjoint paths is at most k. -

Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s - \dagger paths is equal to the min number of edges whose removal disconnects \dagger from s.

Pf. \geq

- Suppose max number of edge-disjoint paths is k.
- Then max flow value is k.
- Max-flow min-cut \Rightarrow cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- $|F|=k$ and disconnects \dagger from s. .

k-Regular Bipartite Graphs

Dancing problem.

- Exclusive Ivy league party attended by n men and n women.
- Each man knows exactly k women; each woman knows exactly k men.
- Acquaintances are mutual.
- Is it possible to arrange a dance so that each woman dances with a different man that she knows?

Mathematical reformulation. Does every k-regular bipartite graph have a perfect matching?

k-Regular Bipartite Graphs Have Perfect Matchings

Theorem. [König 1916, Frobenius 1917] Every k-regular bipartite graph has a perfect matching.
Pf. Size of \max matching $=$ value of \max flow in G^{\prime}. Consider flow:

$$
f(u, v)= \begin{cases}1 / k & \text { if }(\mathrm{u}, \mathrm{v}) \in E \\ 1 & \text { if } \mathrm{u}=s \text { or } \mathrm{v}=t \\ 0 & \text { otherwise }\end{cases}
$$

- f is a flow and its value $=n \Rightarrow$ perfect matching. .

[^0]: Abstract. The present paper shows how to construct a maximum matching in a bipartite graph with n vertices and m edges in a number of computation steps proportional to $(m+n) \sqrt{n}$.

 Key words. algorithm, algorithmic analysis, bipartite graphs, computational complexity, graphs, matching

