A directed graph G consists of a set V of vertices and a set E of arcs where each arc in E is associated with an ordered pair of vertices from V.

$$
E=\{(0,1),(0,2),(1,2),(1,3),(2,4),(3,1),(3,5),(4,3),(4,5)\}
$$

A directed graph \mathbf{G} :

Remark: In a talk, I might just use the pictures without as many words, but I would not use words without pictures.

A directed graph G:

Vertex 2 has in-degree 2 and out-degree 1.

A directed cycle of length k consists of an alternating sequence of vertices and arcs of the form: $v_{0}, e_{1}, v_{1}, e_{2}, \ldots, v_{k-1}, e_{k}, v_{k}$ where $v_{0}=v_{k}$ but otherwise the vertices are distinct and where e_{i} is the $\operatorname{arc}\left(v_{i}, v_{i+1}\right)$ for $i=0,1,2, \ldots, k-1$.

$$
1,(1,2), 2,(2,4), 4,(4,3), 3,(3,1), 1
$$

A directed cycle of length 4:

A cycle of length k consists of an alternating sequence of vertices and arcs of the form: v_{0}, e_{1}, $v_{1}, e_{2}, \ldots, v_{k-1}, e_{k}, v_{k}$ where $v_{0}=v_{k}$ but otherwise the vertices are distinct and where e_{i} is either the $\operatorname{arc}\left(v_{i}, v_{i+1}\right)$ or $\left(v_{i+1}, v_{i}\right)$ for $i=0,1,2, \ldots, k-1$.

A cycle of length 3 which is not a directed cycle (arcs can be traversed in either direction):

A directed path of length 4 from vertex 0 to vertex 5:

$0,(0,1), 1,(1,2), 2,(2,4), 4,(4,5), 5$

A path of length 4 which is not a directed path (arcs can be traversed in either direction) from vertex 0 to vertex 5:

$$
0,(0,2), 2,(1,2), 1,(3,1), 3,(3,5), 5
$$

The maximum flow problem:
Given a directed graph G, a source vertex s and a sink vertex \dagger and a non-negative capacity $c(u, v)$ for each $\operatorname{arc}(u, v)$, find the maximum flow from s to t.

An example of a maximum flow:

A flow function f is an assignment of flow values to the arcs of the graph satisfying: 1. For each $\operatorname{arc}(u, v), 0 \leq f(u, v) \leq c(u, v)$. 2.[Conservation of flow] For each vertex v except for s and t, the flow entering v equals the flow exiting v.

The amount of flow from s to t is equal to the net amount of flow exiting s
$=$ sum over arcs e that exits of $f(e)$ sum over arcs e that enter s of $f(e)$.

Flow $=6$.

A slightly different example:
Flow $=4+4-2=6$.

Because of conservation of flow, the amount of flow from s to tis also equal to the net amount of flow entering t.

Form an auxillary graph as follows:
For each arc (u,v) of G :

1. Add an $\operatorname{arc}(u, v)$ with capacity $c(u, v)-f(u, v)$.
2. Add an arc (v, u) with capacity $f(u, v)$.

Auxillary graph:

Make the auxillary graph for this example:

When the flow is maximum:
$S=\{v: v$ is reachable from s on a directed path of non-zero weighted arc s \}
$T=\mathrm{V}-\mathrm{S}$. Then (S, T) is a minimum capacity $s, t-c u t$ of the graph.

$S=\{0,1,2,4\}, T=\{3,5\}$
$(S, T)=\{(u, v): u \in S$ and $v \in T\}$.
$(S, T)=\{(1,3),(4,3),(4,5)\}$
This is a cut because if you remove these edges there are no directed paths anymore from s to t.

The capacity of a cut (S, T) is the sum of the capacities of the arcs in the cut. $(S, T)=\{(1,3),(4,3),(4,5)\}$
$\operatorname{Capacity}(S, T)=2+2+2=6$.

The maximum flow from s to t cannot be more than the capacity of any of the s,t-cuts. Theorem: the maximum flow equals the minimum capacity of an s,t-cut.

How can we find a maximum flow?

Use the Edmonds-Karp Algorithm to find the maximum flow in this network.

Edmonds-Karp: Use BFS to find augmenting paths in the auxillary graph.

Augmenting path: s, b, e, t

Send 5 units of flow along augmenting path.

Create new auxillary graph:

Do BFS starting at s of auxillary graph.

Identify augmenting path: s, a, c, e, \dagger Capacity of path is 2 .

Augment flow:

Make new auxillary graph:

Apply BFS: Cannot reach t.

$P=\{u: u$ is reachable from s on $B F S\}$
$(P, V-P)=\{(u, v): u \in P$ and $v \notin P\}$.

In the auxillary:
$P=\{s, a, c\} \quad V-P=\{b, d, e, f, \dagger\}$

$(P, V-P)=\{(u, v): u \in P$ and $v \notin P\}$.

$$
\text { So }(P, V-P)=\{(s, b),(c, e)\}
$$

Max Flow Min Cut Theorem: Text p. 169
In any network, the value of a maximum flow is equal to the capacity of a minimum cut.

