| Variable                | Subgraph reduced onto $(a, b)$ | Endpoints            |
|-------------------------|--------------------------------|----------------------|
| $P_1(a, b)$             | Path from w to a to b to x     | w = a, x = b         |
| $P_1(\bar{a}, b)$       | Path from w to a to b to x     | $w \neq a, x = b$    |
| $P_1(a, \bar{b})$       | Path from w to a to b to x     | $w = a, x \neq b$    |
| $P_1(\bar{a}, \bar{b})$ | Path from w to a to b to x     | $w \neq a, x \neq b$ |



| • • • · · · · · · · · · · · · · · · · · |                                               | 1 A A A A A A A A A A A A A A A A A A A |
|-----------------------------------------|-----------------------------------------------|-----------------------------------------|
| $P_2(a, b)$                             | Two paths from $w$ to $a$ and from $b$ to $x$ | w = a, x = b                            |
| $P_2(\bar{a}, b)$                       | Two paths from $w$ to $a$ and from $b$ to $x$ | $w \neq a, x = b$                       |
| $P_2(a, \bar{b})$                       | Two paths from $w$ to $a$ and from $b$ to $x$ | $w = a, x \neq b$                       |
| $P_2(\bar{a}, \bar{b})$                 | Two paths from $w$ to $a$ and from $b$ to $x$ | $w \neq a, x \neq b$                    |



The initial subgraph reduced onto an edge (u,v) is:





| 0   | 0   | w C | 0   | 0   | )× | w<br>C | ^× |
|-----|-----|-----|-----|-----|----|--------|----|
| w=a | b=x | a   | b=x | w=a | Ь  | ۵      | Ь  |



What does the picture look like that corresponds to

$$p_1(u, \overline{w})$$
$$p_1(w, \overline{v})$$
$$p_1(u, v)$$





This is not a subgraph of a Hamilton path.



What does the picture look like that corresponds to

 $p_1(u, \overline{w})$  $p_2(w, \overline{v})$  $p_1(u, v)$ 





 $p_1(u, \overline{w})$  $p_2(w, \overline{v})$  $p_1(u, v)$ 



If G has only vertices u and v, this is a Hamilton path.



What does the picture look like that corresponds to  $p_1(\bar{u}, w)$  $p_2(\bar{w}, v)$  $p_2(u, \bar{v})$ 





What does the picture look like that corresponds to  $p_1(\bar{u}, w)$  $p_2(\bar{w}, v)$  $p_2(u, \bar{v})$ 



This one can be extended to a Hamilton path of the whole graph by using a Hamilton path from G that connects u to v:



We have 8 choices for each of the L, R and M edges.

But many of these do not look like the paths we need to build a Hamilton path.

Which combinations could contribute?

I am very sorry to hear that one of my collaborators in the 120-cell work passed away in a fire on Wednesday evening.



## Michel Marie Deza