2-Trees
[Basis] K_{2} is a 2-tree.
[Inductive step] If G is a 2-tree and (u, v) is an edge of G then
$G+w+(u, w)+(v, w)$ is a 2 -tree.

A partial 2-tree is any subgraph of a 2-tree.

Goal: Count the number of spanning trees of a 2-tree by stripping off 2-leaves.

Two variables per edge:
$d c((u, v))=$ the number of ways to have a 2-component forest selected from the subgraph reduced down onto (u,v) so that u and v are in different components.
$s c((u, v))=$ the number of ways to have a 1-component forest selected from the subgraph reduced down onto (u, v)
(u and v are in the same component).

What should dc(e) and sc(e) be after this reduction?

$d c((u, v))=$ the number of ways to have a 2 component forest selected from the subgraph reduced down onto (u, v) so that u and v are in different components.
$s c((u, v))=$ the number of ways to have a 1component forest selected from the subgraph reduced down onto (u,v)

$\mathrm{dc}(e)=4:$

sc(e)=8:

This reduction could be happening in a bigger setting.

Initialization:

For all edges (u, v):
$d c((u, v))=1$
$s c((u, v))=1$
To handle partial k-trees, if (u, v) was an edge of the 2-tree which was deleted then you can initialize $s c((u, v))=0$.

The general step:
Delete a 2-leaf w. This means we remove w and the edges L and R :

What should the update formulas be for M ?

Notational convention to avoid confusion between the old/new formulas for M :

We have variables
$d c(L), s c(L), d c(R), s c(R), d c(M), s c(M)$
The new values we compute for M will be denoted by
$\mathrm{dc}\left(M^{\prime}\right), s c\left(M^{\prime}\right)$

$\mathrm{dc}(\mathrm{L})$:

$s c(L)$:

dc(R):

$s c(R):$

$\mathrm{dc}(M)$:
$\underset{w}{0}$

$\operatorname{sc}(M)$:

0
 w

$$
L \quad R
$$

Now let us consider all 8 choices for choosing a contribution from each of the edges L, R, and M.

$d c(L) * d c(R) * d c(M):$
NO CONTRIBUTION O

$d c(L) * d c(R) * s c(M):$

$d c(L) * d c(R) * s c(M):$

NO CONTRIBUTION

$$
d c(L) * s c(R) * d c(M):
$$

$$
d c(L) * \operatorname{sc}(R) * s c(M):
$$

$d c(L) * s c(R) * s c(M):$

Add to sc(M^{\prime})

$s c(L)^{*} d c(R)^{*} d c(M):$

Add to
$d c\left(M^{\prime}\right)$

$s c(L) * d c(R) * s c(M):$

Add to sc(M^{\prime})

$$
s c(L) * s c(R) * d c(M):
$$

$s c(L) * s c(R) * d c(M):$
Add to sc(M')

$$
s c(L) * \operatorname{sc}(R) * s c(M):
$$

$s c(L) * s c(R) * s c(M):$
NO
CONTRIBUTION

No contribution:
$d c(L) * d c(R) * d c(M) \quad$ (w disconnected) $d c(L) * d c(R)^{*} s c(M) \quad$ (w disconnected) $s c(L) * \operatorname{sc}(R) * \operatorname{sc}(M)$ (has a cycle) $d c\left(M^{\prime}\right)=d c(L) * s c(R) * d c(M)+$ $s c(L) * d c(R) * d c(M) \quad$ Update
$s c\left(M^{\prime}\right)=d c(L) * s c(R) * s c(M)+$ Formulas

$$
\begin{aligned}
& s c(L) * d c(R)^{*} s c(M)+ \\
& s c(L) * s c(R)^{*} d c(M)
\end{aligned}
$$

