
2-Trees 

[Basis] K2 is a 2-tree. 

[Inductive step] If G is a 2-tree and 
(u, v) is an edge of G then  

G + w + (u,w) + (v,w) is a 2-tree. 

 

A partial 2-tree is any subgraph of a 
2-tree. 



Goal: Count the number of spanning trees 
of a 2-tree by stripping off 2-leaves. 

Two variables per edge: 

dc( (u, v)) = the number of ways to have a 
2-component forest selected from the 
subgraph reduced down onto (u,v) so that 
u and v are in different components. 

sc( (u, v)) = the number of ways to have a 
1-component forest selected from the 
subgraph reduced down onto (u,v)  

 (u and v are in the same component). 

 



What should dc(e) and sc(e) be 
after this reduction? 

 

dc( (u, v)) = the number of ways to have a 2-
component forest selected from the subgraph 
reduced down onto (u,v) so that u and v are in 
different components. 
 
sc( (u, v)) = the number of ways to have a 1-
component forest selected from the subgraph 
reduced down onto (u,v)  
  



dc(e)= 4: 



sc(e)= 8: 



This reduction could be happening in a 
bigger setting. 



Initialization: 

For all edges (u, v): 

dc((u,v))= 1 

sc( (u,v))= 1 

To handle partial k-trees, if (u,v) was an 
edge of the 2-tree which was deleted 
then you can initialize sc((u,v))= 0. 



The general step: 

Delete a 2-leaf w.  
This means we 
remove w and the 
edges L and R: 

What should 
the update 
formulas be 
for M? 



Notational convention to avoid confusion 
between the old/new formulas for M: 

We have variables 

dc(L), sc(L), dc(R), sc(R), dc(M), sc(M) 

The new values we compute for M will be 
denoted by 

dc(M’), sc(M’) 



dc(L): 



sc(L): 



dc(R): 



sc(R): 



dc(M): 



sc(M): 



Now let us consider all 8 choices for 
choosing a contribution from each of the 
edges L, R, and M. 



dc(L) * dc(R) * dc(M) : 



dc(L) * dc(R) * dc(M) : 

NO 
CONTRIBUTION 



dc(L) * dc(R) * sc(M) : 



dc(L) * dc(R) * sc(M) : 

NO 
CONTRIBUTION 



dc(L) * sc(R) * dc(M) : 



dc(L) * sc(R) * dc(M) : 

Add to 

dc(M’) 



dc(L) * sc(R) * sc(M) : 



dc(L) * sc(R) * sc(M) : 

Add to 

sc(M’) 



sc(L) * dc(R) * dc(M) : 



sc(L) * dc(R) * dc(M) : 

Add to 

dc(M’) 



sc(L) * dc(R) * sc(M) : 



sc(L) * dc(R) * sc(M) : 

Add to 

sc(M’) 



sc(L) * sc(R) * dc(M) : 



sc(L) * sc(R) * dc(M) : 

Add to 

sc(M’) 



sc(L) * sc(R) * sc(M) : 



sc(L) * sc(R) * sc(M) : 

NO 
CONTRIBUTION 



No contribution: 

dc(L) * dc(R) * dc(M)    (w disconnected) 

dc(L) * dc(R) * sc(M)    (w disconnected) 

 sc(L) * sc(R) * sc(M)    (has a cycle) 

 

 

 

dc(M’)= dc(L) * sc(R) * dc(M) + 

            sc(L) * dc(R) * dc(M)  

 sc(M’)= dc(L) * sc(R) * sc(M)   + 

            sc(L) * dc(R) * sc(M)  + 

            sc(L) * sc(R) * dc(M)  

 

 

Update 

Formulas 


