
1 

1. Repeat until you have completed 10-20 
experiments. 

   Flip a coin until it comes up heads and then 
record the number of coin flips it took to get 
heads. 

2. Compute the average number of flips it took 
to get heads. 

     



2 

Randomization 

Algorithmic design patterns. 

 Greedy. 

 Divide-and-conquer. 

 Dynamic programming. 

 Network flow. 

 Randomization. 

 

Randomization.  Allow fair coin flip in unit time. 

 

Why randomize?  Can lead to simplest, fastest, or only known algorithm 

for a particular problem. 

 

Ex.  Symmetry breaking protocols, graph algorithms, quicksort, hashing, 

load balancing, Monte Carlo integration, cryptography. 

in practice, access to a pseudo-random number generator 



Selection 

Given : multi-set of n data values S= {a1, a2, a3, … , an} 

 

Position: p, 1 ≤  p  ≤ n 

 

Find the value that would be in position p if the numbers were arranged 

in sorted order (from smallest to largest). 

 

p=1: Find the minimum value. 

p=n: Find the maximum value. 

When n is odd and p= (n+1)/2: Find the median value. 

When n is even:  

the median m is the average of the values in positions n/2 and n/2+1. 

 

 

3 



Example 

{12,  52,  94,  36, 42, 11, 98} 

 

Sorted order: 

11, 12, 36, 42, 52, 94, 98 

 

p=1: 11   (min) 

p=4: 42 (median) 

p=6: 94 

 

It takes O(n log2 n)  time to sort under the comparison model (that is, 

with no bit twiddling allowed as per radix sort). 

 

Can we find the pth element faster than this? 

4 



Randomized Algorithm 

Select( multi-set S,  int p) 

 

Choose an element pivot from S (at random). 

 

Partition S into three multi-sets: 

     S-  : elements less than pivot. 

     S=  : elements equal to the pivot. 

     S+  : elements greater than the pivot. 

If  |S-| ≥   p then return ( Select(S- , p ))  // Element p less than pivot. 

 

If  |S-| + |S=|  ≥ p return (pivot) // Element p equal to pivot. 

 

num_before= |S-| + |S=| 

 

return( Select(S+ , p- num_before)) // Element p in S+ 

 

5 



Implementation of Partitioning 

Multi-sets could be represented as linked lists. 

 

Partitioning can be done in-place in an array as 

per quickSort. 

 

In both cases, the partitioning time is O(n) where n is the size of the 

multi-set S. 

6 



7 

// partition A[left] to A[right] = pivot 
private static int partition(int [] A,  
                                        int left, int right) { 
int i = left; int j = right-1; 
 
while (true)  
{ 
    while (A[i]  < A[right]) {i++;} 
    while (j > left && A[right] < A[j]) {j--};  
     
    if (i >= j) break;  
    swap(A, i, j); i++; j--; 
} 
swap(A, i, right); // Put pivot element into place 
return i; 
} 
 

 

Code partitions when values 
are all distinct. How can you 
modify it to work with 
repeated values? 



What is the expected time for this algorithm? 

n= |S| 

 

A “good” pivot partitions so that S- and S+ both have size at least n/4. 

 

Given distinct values, how many values are good pivots? 

 

What is the expected time that it takes to choose a good pivot if pivots 

are chosen at random? 

 

 

8 



How many steps can we expect the algorithm to take? 

Initial phase is phase 0. 

The algorithm is in phase j if the current size of S is s and 

 

n( ¾ )j+1  <    s  ≤    n( ¾ )j 

 

Since the expected number of trials before we get a good pivot 

is two, we expect to stay in phase j for at most 2 trials. 

 

Partitioning time: c n 

Upper bound on expected time: 

2cn + 2c ( ¾) n + 2 c ( ¾ )2 n  + 2c ( ¾)3 n + … 

 

Taking limits as n goes to infinity: 

= 2cn [1+ ( ¾)  +  ( ¾ )2  + ( ¾)3 n + … ] 

 

9 



Geometric sums 

[1+ ( ¾)  +  ( ¾ )2  + ( ¾)3 + … ] 

 

Generic form: 

1 + r + r2 + r3 + … 

 

The value of this infinite sum is equal to: 

 
lim

𝑛→∞
1 + 𝑟 +  𝑟2 +  … + 𝑟𝑛  

Multiply: 

1 + 𝑟 +  𝑟2 +  … + 𝑟𝑛  (1 − 𝑟)  = (1 – rn+1) 

So the value we want is: 
lim

𝑛→∞
1 + 𝑟 +  𝑟2 +  … + 𝑟𝑛  = lim

𝑛→∞
 (1 – rn+1)/(1-r)=  1/(1-r) 

 

10 


