

History of NP-completeness Reductions

3-SAT- each clause must contain exactly 3 variables (assignment- at most 3).
Given: SAT is NP-complete (proof CSC 320) Theorem: 3-SAT is NP-Complete. The first step in any NP-completeness proof is to argue that the problem is in NP. The problem 3-SAT is a yes/no question. Certificate: truth assignment, can be checked in polynomial time. Next, we show that a polynomial time algorithm for 3-SAT implies the existence of one for SAT.

To convert a SAT problem to 3-SAT:

 1.Clauses of size 1.SAT: $\{z\}$
3-SAT:

$$
\begin{array}{lll}
\left\{\begin{array}{ll}
z, & y_{1}, \\
y_{2}
\end{array}\right\}, \\
\left\{z, \neg y_{1},\right. & \left.y_{2}\right\}, \\
\{z, & \left.y_{1}, \neg y_{2}\right\}, \\
\left\{z, \neg y_{1},\right. & \left.\neg y_{2}\right\}
\end{array}
$$

y_{1} and y_{2} are new variables.
2. Clauses of size 2.

SAT: $\left\{z_{1}, z_{2}\right\}$
3-SAT: $\left\{z_{1}, z_{2}, y\right\}$,

$$
\left\{z_{1}, z_{2},-y\right\}
$$

y is a new variable.
3. Clauses of size 3.

Leave these as they are since they are already acceptable for 3-SAT.

4. Clauses of size 4 or more.

SAT: $\left\{z_{1}, z_{2}, z_{3}, \ldots z_{k}\right\}, k>3$

3-SAT:

$$
\begin{aligned}
& \left\{z_{1}, z_{2}, y_{1}\right\}, \\
& \left\{\neg y_{1}, z_{3}, y_{2}\right\}, \\
& \left\{\neg y_{2}, z_{4}, y_{3}\right\},
\end{aligned}
$$

$$
\left\{\neg y_{k-4}, z_{k-2}, y_{k-3}\right\},
$$

$$
\left\{\neg y_{k-3}, z_{k-1}, z_{k}\right\}
$$

$y_{1}, y_{2}, \ldots y_{k-3}$, are new variables.

This does not constitute a proof of NPcompleteness unless we can argue that the size of the new 3-SAT problem problem is polynomially bounded by the size of the old SAT problem. Consider each case:

Size of clause	\# new literals	size before	size after
1	2	1	12
2	1	2	6
3	0	3	3
$\mathrm{k} \geq 4$	$\mathrm{k}-3$	k	$\mathrm{k}+2(\mathrm{k}-3)$

In all cases, the size after is at most 12 times the original problem size.

2-SAT: All clauses have at most 2 literals.

There is a linear time algorithm for 2-SAT so $2-S A T$ is in P.

The 3-SAT problem is as hard as SAT but unless $P=N P, 2-S A T$ is easier than 3-SAT or SAT.

A set $S \subseteq V(G)$ is a vertex cover if every edge of G has at least one vertex in S.

VERTEX COVER:
Given: G, k
Question: Does G have a vertex cover of order k?

Blue: vertex cover
Red: independent set

To solve 3-SAT using vertex cover:

1. For each literal x_{i}, include:

2. For each clause (x_{i}, x_{j}, x_{k}) use a

 gadget:
Each white vertex connects to the corresponding green one.

Pictures from:

3-SAT Problem:
(x 1 or $x 1$ or $x 2$) AND ($\neg \times 1$ or $\neg \times 2$ or $\neg \times 2$) AND ($-x 1$ or $x 2$ or $\times 2$)

At least one vertex from

is in the vertex cover.
For each gadget, at least 2 vertices are in the vertex cover:

Number of variables: n
Number of clauses: m
When is there a vertex cover of order $n+2 m$?

Put vertices corresponding to true variables in the vertex cover.

Satisfying assignment: Each clause has at least one true variable. Put two other vertices into the vertex cover:

So each truth assignment corresponds to a vertex cover of order $n+2 m$.

Any vertex cover of order $n+2 m$ corresponds to a satisfying assignment because we can only select at most one of x and $\neg x$ (these are the true variables). The true variables must satisfy each clause since at most 2 vertices can be selected from each clause gadget.

