
To understand material better: 
• start by making up some examples and 

working through the problem with the 
examples. 

• try writing your own proof. 
• fix problems in notation. 
• draw lots of pictures to aid 

understanding. 
• teach it to someone else. 
 



The Load Balancing problem. 
We are given a set of m machines M1, M2, …, Mm 

and a set of n jobs numbered 1, 2, …, n. 
The processing time for job j is tj.  
 
All machines are identical and can run any of the 
jobs. Each machine can only run one job at a 
time. Each job should be assigned to one 
machine. 
 
The goal is to assign each job to a machine so 
that the maximum amount of time used by one of 
the machines is minimized. 



The Load Balancing problem: Formal notation. 
 Machines: M1, M2, …, Mm  

The n jobs  are numbered 1, 2, …, n. 
The processing time for job j is tj.  
Ai = set that contains the job numbers of the 
jobs that are assigned to machine Mi. 
Side note: For a legal assignment of jobs to 
machines, the sets Ai for i=1 to m give a partition 
of the set of job numbers {1, 2, …., n}. 
Ti= time machine Mi takes to process its jobs, 
Ti =   𝑡𝑗𝑗 ∈ 𝐴

𝑖
 

 
The goal is to Minimize the makespan which is 
defined to be equal to Maxi=1 to m Ti. 
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List-scheduling algorithm. 

 Consider n jobs in some fixed order. 

 Assign job j to machine whose load is smallest so far. 

 

 

 

 

 

 

 

 

 

 

 

 

Implementation.  O(n log m) using a priority queue. 

Load Balancing:  List Scheduling 

List-Scheduling(m, n, t1,t2,…,tn) { 

   for i = 1 to m { 

      loadi  0 

      Ai   

   } 

 

   for j = 1 to n { 

      Choose i so that loadi is minimized. 

      Add j to the set Ai. 
      loadi  loadi + tj 
   } 

   return the sets A1, A2, … , Am 
} 

jobs assigned to machine i 

load on machine i 

assign job j to machine i 

update load of machine i 



One example: 
m=3, n=5, Job times: 2, 3, 4, 6, 2, 2 
 
The makespan of this assignment is 8. 



Reordering the job times in reverse 
sorted order: 
m=3, n=5, Job times: 6, 4, 3, 2, 2, 2 
 
The makespan of this assignment is 7. 



Important observation: 
If you have m integer values a1, a2, …, am 

then the minimum value is at most the floor 
of the average value and the maximum is at 
least the ceiling of the average value. 
{50, 50, 50, 50, 50}  
average: 50, min 50, max 50 
{49, 49, 49, 49, 50, 50, 50, 50} 
average: 49.5 min 49, max 50 
Justification: 
n * min ≤  n * average ≤ n * max so 
min ≤  average ≤ max. 
 



The average time per machine will be 

(6 +  4 + 3 + 2 + 2 + 2)/ 3 = 19/3= 6
1
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The job times are integers so the 
makespan must be at least the ceiling of 
the average for any assignment.  
Conclusion: this one is optimal. 

makespan = 7 



Goal: to show that for any arbitrary 
ordering of the job times, the resulting 
makespan is at most two times the 
optimal makespan. 
 
Notation: 
T= makespan of the greedy solution. 
T*= makespan of an optimal solution. 
 
We want to prove that T ≤ 2 T*. 



Lemma 1: The makespan T* of an optimal 
solution is at least Maxj=1 to n tj. 
 
Proof: The machine i that is assigned a 
job j that has a maximum processing time 
tj has Ti at least tj and hence the 
makespan is at least tj. 



Lemma 2: The optimal makespan T* is at least 
as big as the average assignment time: 
 

          T* ≥    
1

𝑚
   (  𝑡𝑗)

𝑛
𝑗=1  

 
We divide by m since there are m processors. 

T* = average value. T* = 12 > average = 8. 



A worse example: 
Average=(16 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1)/4= 6 
The makespan= 16. 
But note: here our other bound on T* is tight. 



The two bounds: 
Lemma 1:  
T* is at least the maximum time of a job. 
 
Lemma 2:  
T* is at least the average time per 
processor. 
 
How can we use this to prove that the 
makespan T of any solution found by our 
greedy algorithm is at most 2 T*? 
 
 



Observations 
1. At every step of the greedy algorithm, the 
load of the processor i that is chosen to host 
job j has load that is at most the average load 
so far. [The average is always at least the min]. 
2. The average load so far is never more than 
the average load of the final solution. 
 
 

Equality can only occur 
when every machine has 
the same load.  



Let Mx be a processor that has maximum 
processing time in the greedy solution. 
Equivalently, the makespan T of the 
greedy solution is equal to Tx. We 
consider the load on x before its last job 
j was added to its assignment: 
 



After:  

Before the last job given to M4 is 
assigned to M4: 



Some other jobs can get assigned to other 
processors: the critical point is that for machine 
x, its load is equal to the makespan T when we are 
done. 

Just after the last 
job was assigned 
to machine M4. 

When all jobs have 
been assigned to 
processors. 



The generic picture: 
Before the last job for Mx is assigned: 

IMPORTANT POINT:  
 min ≤ current average ≤ final average 



Before the last job for Mx is assigned: 

Just after the last job for Mx is assigned: 



When we are done: 

Just after the last job for Mx is assigned: 



  
 min ≤ current average ≤ final average 

The load of Mx when we are done is equal to 
min + time for the red job 
which is at most 
final average + time for the longest job 
which by our lemmas is at most  
T* + T*  = 2 T*. 



We have a bound on the greedy algorithm 
performance: 
 
T = greedy makespan 
T* = optimal makespan 
T  ≤  2 T* 

 
But are there examples that have greedy 
solutions that are twice as bad as the 
optimal solution (or close to it)? 
 
Or is our analysis too sloppy to be tight? 
 
 



How badly can things go wrong? 

Optimal 
makespan 
is 8. 

Greedy 
makespan 
is 14. 



Optimal solution: makespan = m*k. 

To ensure the number of  problems of size 
1 is divisible by m (allowing greedy to 
distribute evenly): (m-1) * (m* k) problems 
of size 1 and one problem of size (m*k). 



Greedy solution. 

Number of problems: 
Size 1: (m-1) * m*k,      Size m*k: 1 
Makespan is k * (m-1) + m*k= 2mk - k 
 
Ratio T/T*= (2mk –k)/(mk) = 2 – 1/m ≈ 2 



The worst case examples considered the jobs in 
increasing order of times. 
Can we do better if we consider the jobs in the 
reverse order (decreasing order)? 
The greedy algorithm gives an optimal solution for 
the worst case scenario we just examined: 
 



Lemma 3: If we have at most m jobs, the 
greedy algorithm gives an optimal solution. 
 
Proof: each job is placed on its own 
processor and hence the value of T* is the 
length of a longest job, and we cannot do any 
better than that. 
 



Lemma 4: If we have more than m jobs 
then the makespan of an optimal solution 
is at least 2 times the time of job m+1: 
T* ≥  2 tm+1 ⟹  tm+1 ≤ T

*/2. 
Proof [pigeonhole principle] 
Consider only the first m+1 jobs. By the 
pigeonhole principle, in any assignment of 
jobs to machines, some machine must be 
assigned at least two of these jobs. 
Since the job times are  
t1 ≥ t2 ≥ t3 ≥ … ≥ tm ≥ tm+1 

the times for these two jobs are both at 
least tm+1. 
 



With more than m jobs: 
T  ≤ average load + time of red job 
     ≤ T* + tm+1 

      
     ≤ T* + T*/ 2 
 
              
 



The problem statement says that we are trying 
to make the loads on the machines as “balanced 
as possible”. But the formal statement of the 
problem is that we should minimize the 
maximum processing time of a machine. These 
are not the same! Input times: 10, 2, 2, 2, 2, 2. 
 
 

An optimal solution that is 
not well-balanced. 

A solution that is more 
balanced. 



If you ever have to deal with customers to 
find out what they really want: 
make sure that the expression of the 
problem is really precise.  
 
Here the “informal statement” of the 
problem does not match the formal 
statement of the optimization problem. 
Formal statement: Minimize makespan. 
Informal statement: Balance machine loads. 
 
What do they really want? 



Some things I do not like about the notation: 
Each job j … 
The jobs are numbered from 1 to n and the 
time for the job numbered j is tj. 
 
If tj is a very large job… tj is a time not a 
job. 
 
A(i)= set of jobs assigned to processor i. 
This to me looks liked the notation for a 
function and not a set. A set is not a 
function.  
Ai = set of jobs assigned to machine i. 



Slides: 
J(i)= set of jobs assigned to machine i. 
It’s nicer to not use both J and j. 
T= maxi Ti   or T* ≥  𝑡𝑗𝑗  
Especially when you get to algorithm 
analysis, it is nice to see limits on sums 
and expressions like this: 
 
T=  Max
𝑖=1𝑡𝑜 𝑚

 𝑇𝑖 

 𝑡𝑗

𝑛

𝑖=1

 T*   ≥ 



If you can say things concisely in words 
it is often easier to understand than 
mathematical formulas. 
 
It helps to illustrate the points you are 
making in the proof with examples. 
 
It’s easier to see which time slots are 
assigned to which jobs using the colors 
than if I tried to use numbers instead. 


