
To understand material better:
• start by making up some examples and

working through the problem with the
examples.

• try writing your own proof.
• fix problems in notation.
• draw lots of pictures to aid

understanding.
• teach it to someone else.

The Load Balancing problem.
We are given a set of m machines M1, M2, …, Mm

and a set of n jobs numbered 1, 2, …, n.
The processing time for job j is tj.

All machines are identical and can run any of the
jobs. Each machine can only run one job at a
time. Each job should be assigned to one
machine.

The goal is to assign each job to a machine so
that the maximum amount of time used by one of
the machines is minimized.

The Load Balancing problem: Formal notation.
 Machines: M1, M2, …, Mm

The n jobs are numbered 1, 2, …, n.
The processing time for job j is tj.
Ai = set that contains the job numbers of the
jobs that are assigned to machine Mi.
Side note: For a legal assignment of jobs to
machines, the sets Ai for i=1 to m give a partition
of the set of job numbers {1, 2, …., n}.
Ti= time machine Mi takes to process its jobs,
Ti = 𝑡𝑗𝑗 ∈ 𝐴

𝑖

The goal is to Minimize the makespan which is
defined to be equal to Maxi=1 to m Ti.

4

List-scheduling algorithm.

 Consider n jobs in some fixed order.

 Assign job j to machine whose load is smallest so far.

Implementation. O(n log m) using a priority queue.

Load Balancing: List Scheduling

List-Scheduling(m, n, t1,t2,…,tn) {

 for i = 1 to m {

 loadi 0

 Ai

 }

 for j = 1 to n {

 Choose i so that loadi is minimized.

 Add j to the set Ai.
 loadi loadi + tj
 }

 return the sets A1, A2, … , Am
}

jobs assigned to machine i

load on machine i

assign job j to machine i

update load of machine i

One example:
m=3, n=5, Job times: 2, 3, 4, 6, 2, 2

The makespan of this assignment is 8.

Reordering the job times in reverse
sorted order:
m=3, n=5, Job times: 6, 4, 3, 2, 2, 2

The makespan of this assignment is 7.

Important observation:
If you have m integer values a1, a2, …, am

then the minimum value is at most the floor
of the average value and the maximum is at
least the ceiling of the average value.
{50, 50, 50, 50, 50}
average: 50, min 50, max 50
{49, 49, 49, 49, 50, 50, 50, 50}
average: 49.5 min 49, max 50
Justification:
n * min ≤ n * average ≤ n * max so
min ≤ average ≤ max.

The average time per machine will be

(6 + 4 + 3 + 2 + 2 + 2)/ 3 = 19/3= 6
1

3

The job times are integers so the
makespan must be at least the ceiling of
the average for any assignment.
Conclusion: this one is optimal.

makespan = 7

Goal: to show that for any arbitrary
ordering of the job times, the resulting
makespan is at most two times the
optimal makespan.

Notation:
T= makespan of the greedy solution.
T*= makespan of an optimal solution.

We want to prove that T ≤ 2 T*.

Lemma 1: The makespan T* of an optimal
solution is at least Maxj=1 to n tj.

Proof: The machine i that is assigned a
job j that has a maximum processing time
tj has Ti at least tj and hence the
makespan is at least tj.

Lemma 2: The optimal makespan T* is at least
as big as the average assignment time:

 T* ≥
1

𝑚
 (𝑡𝑗)

𝑛
𝑗=1

We divide by m since there are m processors.

T* = average value. T* = 12 > average = 8.

A worse example:
Average=(16 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1)/4= 6
The makespan= 16.
But note: here our other bound on T* is tight.

The two bounds:
Lemma 1:
T* is at least the maximum time of a job.

Lemma 2:
T* is at least the average time per
processor.

How can we use this to prove that the
makespan T of any solution found by our
greedy algorithm is at most 2 T*?

Observations
1. At every step of the greedy algorithm, the
load of the processor i that is chosen to host
job j has load that is at most the average load
so far. [The average is always at least the min].
2. The average load so far is never more than
the average load of the final solution.

Equality can only occur
when every machine has
the same load.

Let Mx be a processor that has maximum
processing time in the greedy solution.
Equivalently, the makespan T of the
greedy solution is equal to Tx. We
consider the load on x before its last job
j was added to its assignment:

After:

Before the last job given to M4 is
assigned to M4:

Some other jobs can get assigned to other
processors: the critical point is that for machine
x, its load is equal to the makespan T when we are
done.

Just after the last
job was assigned
to machine M4.

When all jobs have
been assigned to
processors.

The generic picture:
Before the last job for Mx is assigned:

IMPORTANT POINT:
 min ≤ current average ≤ final average

Before the last job for Mx is assigned:

Just after the last job for Mx is assigned:

When we are done:

Just after the last job for Mx is assigned:

 min ≤ current average ≤ final average

The load of Mx when we are done is equal to
min + time for the red job
which is at most
final average + time for the longest job
which by our lemmas is at most
T* + T* = 2 T*.

We have a bound on the greedy algorithm
performance:

T = greedy makespan
T* = optimal makespan
T ≤ 2 T*

But are there examples that have greedy
solutions that are twice as bad as the
optimal solution (or close to it)?

Or is our analysis too sloppy to be tight?

How badly can things go wrong?

Optimal
makespan
is 8.

Greedy
makespan
is 14.

Optimal solution: makespan = m*k.

To ensure the number of problems of size
1 is divisible by m (allowing greedy to
distribute evenly): (m-1) * (m* k) problems
of size 1 and one problem of size (m*k).

Greedy solution.

Number of problems:
Size 1: (m-1) * m*k, Size m*k: 1
Makespan is k * (m-1) + m*k= 2mk - k

Ratio T/T*= (2mk –k)/(mk) = 2 – 1/m ≈ 2

The worst case examples considered the jobs in
increasing order of times.
Can we do better if we consider the jobs in the
reverse order (decreasing order)?
The greedy algorithm gives an optimal solution for
the worst case scenario we just examined:

Lemma 3: If we have at most m jobs, the
greedy algorithm gives an optimal solution.

Proof: each job is placed on its own
processor and hence the value of T* is the
length of a longest job, and we cannot do any
better than that.

Lemma 4: If we have more than m jobs
then the makespan of an optimal solution
is at least 2 times the time of job m+1:
T* ≥ 2 tm+1 ⟹ tm+1 ≤ T

*/2.
Proof [pigeonhole principle]
Consider only the first m+1 jobs. By the
pigeonhole principle, in any assignment of
jobs to machines, some machine must be
assigned at least two of these jobs.
Since the job times are
t1 ≥ t2 ≥ t3 ≥ … ≥ tm ≥ tm+1

the times for these two jobs are both at
least tm+1.

With more than m jobs:
T ≤ average load + time of red job
 ≤ T* + tm+1

 ≤ T* + T*/ 2

The problem statement says that we are trying
to make the loads on the machines as “balanced
as possible”. But the formal statement of the
problem is that we should minimize the
maximum processing time of a machine. These
are not the same! Input times: 10, 2, 2, 2, 2, 2.

An optimal solution that is
not well-balanced.

A solution that is more
balanced.

If you ever have to deal with customers to
find out what they really want:
make sure that the expression of the
problem is really precise.

Here the “informal statement” of the
problem does not match the formal
statement of the optimization problem.
Formal statement: Minimize makespan.
Informal statement: Balance machine loads.

What do they really want?

Some things I do not like about the notation:
Each job j …
The jobs are numbered from 1 to n and the
time for the job numbered j is tj.

If tj is a very large job… tj is a time not a
job.

A(i)= set of jobs assigned to processor i.
This to me looks liked the notation for a
function and not a set. A set is not a
function.
Ai = set of jobs assigned to machine i.

Slides:
J(i)= set of jobs assigned to machine i.
It’s nicer to not use both J and j.
T= maxi Ti or T* ≥ 𝑡𝑗𝑗
Especially when you get to algorithm
analysis, it is nice to see limits on sums
and expressions like this:

T= Max
𝑖=1𝑡𝑜 𝑚

 𝑇𝑖

 𝑡𝑗

𝑛

𝑖=1

 T* ≥

If you can say things concisely in words
it is often easier to understand than
mathematical formulas.

It helps to illustrate the points you are
making in the proof with examples.

It’s easier to see which time slots are
assigned to which jobs using the colors
than if I tried to use numbers instead.

