
1

Chapter 3

Graphs

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

3.1 Basic Definitions and Applications

Used when including notation I would
use instead of what the text is using.

The notation I use tends to follow
West and is more common in graph
theory papers/books.

http://all-free-download.com/free-vector/girl-face-cartoon-clip-art.html

3

Undirected Graphs

Undirected graph. G = (V, E)

 V = nodes [vertices]

 E = edges between pairs of nodes.

 Captures pairwise relationship between objects.

 Graph size parameters: n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }

n = 8

m = 11

For programs, V= {0, 1, …, 7}

E={(1,2), (1,3), …., (5,6)}
0

IMPORTANT!
Singular: vertex
Plural : vertices

4

Some Graph Applications

transportation

Graph

street intersections

Nodes Edges

highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires

5

World Wide Web

Web graph.

 Node: web page.

 Edge: hyperlink from one page to another.

cnn.com

cnnsi.com novell.com netscape.com timewarner.com

hbo.com

sorpranos.com

6

9-11 Terrorist Network

Social network graph.

 Node: people.

 Edge: relationship between two people.

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

7

Ecological Food Web

Food web graph.

 Node = species.

 Edge = from prey to predator.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

8

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge.

 Two representations of each edge.

 Space proportional to n2.

 Checking if (u, v) is an edge takes (1) time.

 Identifying all edges takes (n2) time.

 1 2 3 4 5 6 7 8

1 0 1 1 0 0 0 0 0

2 1 0 1 1 1 0 0 0

3 1 1 0 0 1 0 1 1

4 0 1 0 1 1 0 0 0

5 0 1 1 1 0 1 0 0

6 0 0 0 0 1 0 0 0

7 0 0 1 0 0 0 0 1

8 0 0 1 0 0 0 1 0

Matrix: A
entry: au,v

Number starting with 0

9

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

 Two representations of each edge.

 Space proportional to m + n.

 Checking if (u, v) is an edge takes O(deg(u)) time.

 Identifying all edges takes (m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 8 7

2 3 4 6

5

degree = number of neighbors of u

3 7

Number starting with 0

10

11

Paths and Connectivity

Def. A path[walk] in an undirected graph G = (V, E) is a sequence P

of nodes v1, v2, …, vk-1, vk with the property that each consecutive pair

vi, vi+1 is joined by an edge in E.

Def. A path[walk] is simple if all nodes are distinct.

[A path is a simple walk]

Def. An undirected graph is connected if for every pair of nodes u and

v, there is a path between u and v.

12

Cycles

Def. A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the

first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

13

Trees

Def. An undirected graph is a tree if it is connected and does not

contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the

following statements imply the third.

 G is connected.

 G does not contain a cycle.

 G has n-1 edges.

http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon

Six Degrees of Kevin Bacon is a parlor game based on the "six degrees

of separation" concept, which posits that any two people on Earth are

six or fewer acquaintance links apart. That idea eventually morphed

into this parlor game, wherein movie buffs challenge each other to find

the shortest path between an arbitrary actor and venerated Hollywood

character actor Kevin Bacon. It rests on the assumption that any

individual involved in the Hollywood, California, film industry can be

linked through his or her film roles to Kevin Bacon within six steps. The

game requires a group of players to try to connect any such individual

to Kevin Bacon as quickly as possible and in as few links as possible. It

can also be described as a trivia game based on the concept of the

small world phenomenon.

14

http://en.wikipedia.org/wiki/Parlor_game
http://en.wikipedia.org/wiki/Six_degrees_of_separation
http://en.wikipedia.org/wiki/Six_degrees_of_separation
http://en.wikipedia.org/wiki/Character_actor
http://en.wikipedia.org/wiki/Kevin_Bacon
http://en.wikipedia.org/wiki/Hollywood
http://en.wikipedia.org/wiki/Film
http://en.wikipedia.org/wiki/Trivia
http://en.wikipedia.org/wiki/Game
http://en.wikipedia.org/wiki/Small_world_experiment

15

Paul Erdos

David
Drake

Charlie
Colbourn

Michel
Deza

Mike
Langston

Brad Sean

Jen

A subgraph of
the Erdős
number graph

Brendan
McKay

16

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge

away from r.

Importance. Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

out-tree, or rooted arborescence

17

18

Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.

19

GUI Containment Hierarchy

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

GUI containment hierarchy. Describe organization of GUI widgets.

3.2 Graph Traversal

21

Connectivity

s-t connectivity problem. Given two node s and t, is there a path

between s and t?

s-t shortest path problem. Given two node s and t, what is the length

of the shortest path between s and t?

Applications.

 Friendster.

 Maze traversal.

 Kevin Bacon number.

 Erdos number.

 Fewest number of hops in a communication network.

22

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding

nodes one "layer" at a time.

BFS algorithm.

 L0 = { s }.

 L1 = all neighbors of L0.

 L2 = all nodes that do not belong to L0 or L1, and that have an edge

to a node in L1.

 Li+1 = all nodes that do not belong to an earlier layer, and that have

an edge to a node in Li.

Theorem. For each i, Li consists of all nodes at distance exactly i

from s. There is a path from s to t iff t appears in some layer.

s L1 L2 L n-1

23

Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of

G. Then the level of x and y differ by at most 1.

L0

L1

L2

L3

24

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if

the graph is given by its adjacency representation.

Pf.

 Easy to prove O(n2) running time:

– at most n lists L[i]

– each node occurs on at most one list; for loop runs n times

– when we consider node u, there are n incident edges (u, v),

and we spend O(1) processing each edge

 Actually runs in O(m + n) time:

– when we consider node u, there are deg(u) incident edges (u, v)

– total time processing edges is uV deg(u) = 2m ▪

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

25

BFS starting at a vertex s using an array for
the queue:

Data structures:
A queue Q[0..(n-1)] of vertices, qfront, qrear.

parent[i]= BFS tree parent of node i.
The parent of the root s is s.
To initialize:
// Set parent of each node to be -1 to indicate
// that the vertex has not yet been visited.
for (i=0; i < n; i++) parent[i]= -1;

// Initialize the queue so that BFS starts at s
qfront=0; qrear=1; Q[qfront]= s;
parent[s]=s;

26

while (qfront < qrear) // Q is not empty

 u= Q[qfront]; qfront++;

 for each neighbour v of u

 if (parent[v] == -1) // not visited

 parent[v]= u;

 Q[qrear]= v; qrear++;

 end if

 end for

end while

27

Red arcs represent parent information:

28

BFI[v]= Breadth first index of v

 = step at which v is visited.

The BFI[v] is equal to v’s position in the
queue.

Renumbering with BFI
before solving
independent set can
make some algorithms
drastically faster. I
suspect it would also
help for dominating set.

29

To initialize:
// Set parent of each node to be -1 to indicate
// that the vertex has not yet been visited.
for (i=0; i < n; i++) parent[i]= -1;

// Initialize the queue so that BFS starts at s
qfront=0; qrear=1; Q[qfront]= s;
parent[s]=s;

BFI[s]= 0;

30

while (qfront < qrear) // Q is not empty

 u= Q[qfront]; qfront++;

 for each neighbour v of u

 if (parent[v] == -1) // not visited

 parent[v]= u; BFI[v]= qrear;

 Q[qrear]= v; qrear++;

 end if

 end for

end while

31

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.

32

One application:

How many connected components does a
graph have and which vertices are in each
component?

33

To find the connected components:

for (i=0; i < n; i++)

 parent[i]= -1;

nComp= 0;

for (i=0; i < n; i++)

 if (parent[i] == -1)

 nComp++;

 BFS(i, parent, component, nComp);

34

BFS(s, parent, component, nComp)

// Do not initialize parent.

// Initialize the queue so that BFS starts at s

qfront=0; qrear=1; Q[qfront]= s;

parent[s]=s;

component[s]= nComp;

35

while (qfront < qrear) // Q is not empty

 u= Q[qfront]; qfront++;

 for each neighbour v of u

 if (parent[v] == -1) // not visited

 parent[v]= u; component[v]= nComp;

 Q[qrear]= v; qrear++;

 end if

 end for

end while

36

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire

blob of neighboring lime pixels to blue.

 Node: pixel.

 Edge: two neighboring lime pixels.

 Blob: connected component of lime pixels.

 recolor lime green blob to blue

37

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire

blob of neighboring lime pixels to blue.

 Node: pixel.

 Edge: two neighboring lime pixels.

 Blob: connected component of lime pixels.

 recolor lime green blob to blue

38

Connected Component

Connected component. Find all nodes reachable from s.

Theorem. Upon termination, R is the connected component containing s.

 BFS = explore in order of distance from s.

 DFS = explore in a different way.

s

u v

R

it's safe to add v

3.4 Testing Bipartiteness

40

Bipartite Graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be

colored red or blue such that every edge has one red and one blue end.

Applications.

 Stable marriage: men = red, women = blue.

 Scheduling: machines = red, jobs = blue.

a bipartite graph

41

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?

 Many graph problems become:

– easier if the underlying graph is bipartite (matching)

– tractable if the underlying graph is bipartite (independent set)

 Before attempting to design an algorithm, we need to understand

structure of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G

42

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

43

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers

produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an

 odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

44

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers

produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an

 odd-length cycle (and hence is not bipartite).

Pf. (i)

 Suppose no edge joins two nodes in adjacent layers.

 By previous lemma, this implies all edges join nodes on same level.

 Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Case (i)

L1 L2 L3

45

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers

produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an

 odd-length cycle (and hence is not bipartite).

Pf. (ii)

 Suppose (x, y) is an edge with x, y in same level Lj.

 Let z = lca(x, y) = lowest common ancestor.

 Let Li be level containing z.

 Consider cycle that takes edge from x to y,

then path from y to z, then path from z to x.

 Its length is 1 + (j-i) + (j-i), which is odd. ▪

z = lca(x, y)

(x, y) path from
y to z

path from
z to x

46

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

