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Chapter 3 
 
Graphs 

Slides by Kevin Wayne. 
Copyright © 2005 Pearson-Addison Wesley. 
All rights reserved. 



3.1  Basic Definitions and Applications 

Used when including notation I would 
use instead of what the text is using. 
 
The notation I use tends to follow 
West and is more common in graph 
theory papers/books. 

http://all-free-download.com/free-vector/girl-face-cartoon-clip-art.html 
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Undirected Graphs 

Undirected graph.  G = (V, E) 

 V = nodes [vertices              ] 

 E = edges between pairs of nodes. 

 Captures pairwise relationship between objects. 

 Graph size parameters:  n = |V|, m = |E|. 

 

 

 

 

 

 

 

 

 

 

V = { 1, 2, 3, 4, 5, 6, 7, 8 } 

E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } 

n = 8 

m = 11 

For programs, V= {0, 1, …, 7} 

E={(1,2), (1,3), …., (5,6)} 
0 

IMPORTANT! 
Singular: vertex 
Plural    : vertices 
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Some Graph Applications 

transportation 

Graph 

street intersections 

Nodes Edges 

highways 

communication computers fiber optic cables 

World Wide Web web pages hyperlinks 

social people relationships 

food web species predator-prey 

software systems functions function calls 

scheduling tasks precedence constraints 

circuits gates wires 
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World Wide Web 

Web graph. 

 Node:  web page. 

 Edge:  hyperlink from one page to another. 

cnn.com 

cnnsi.com novell.com netscape.com timewarner.com 

hbo.com 

sorpranos.com 



6 

9-11 Terrorist Network 

Social network graph. 

 Node:  people. 

 Edge:  relationship between two people. 

Reference:  Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs 
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Ecological Food Web 

Food web graph. 

 Node = species.  

 Edge = from prey to predator. 

Reference:  http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff 
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Graph Representation:  Adjacency Matrix 

Adjacency matrix.  n-by-n matrix with Auv = 1 if (u, v) is an edge. 

 Two representations of each edge. 

 Space proportional to n2. 

 Checking if (u, v) is an edge takes (1) time.  

 Identifying all edges takes (n2) time. 

 

 

  1 2 3 4 5 6 7 8 

1 0 1 1 0 0 0 0 0 

2 1 0 1 1 1 0 0 0 

3 1 1 0 0 1 0 1 1 

4 0 1 0 1 1 0 0 0 

5 0 1 1 1 0 1 0 0 

6 0 0 0 0 1 0 0 0 

7 0 0 1 0 0 0 0 1 

8 0 0 1 0 0 0 1 0 

Matrix: A  
entry:  au,v 

Number starting with 0 
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Graph Representation:  Adjacency List 

Adjacency list.  Node indexed array of lists. 

 Two representations of each edge. 

 Space proportional to m + n. 

 Checking if (u, v) is an edge takes O(deg(u)) time. 

 Identifying all edges takes (m + n) time. 

 

1 2 3 

2 

3 

4 2 5 

5 

6 

7 3 8 

8 

1 3 4 5 

1 2 5 8 7 

2 3 4 6 

5 

degree = number of neighbors of u 

3 7 

Number starting with 0 
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Paths and Connectivity 

Def.  A path[walk      ] in an undirected graph G = (V, E) is a sequence P 

of nodes v1, v2, …, vk-1, vk with the property that each consecutive pair 

vi, vi+1 is joined by an edge in E. 

Def.  A path[walk      ] is simple if all nodes are distinct. 

 

[A path is a simple walk      ] 

Def.  An undirected graph is connected if for every pair of nodes u and 

v, there is a path between u and v. 
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Cycles 

Def.  A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the 

first k-1 nodes are all distinct. 

cycle C = 1-2-4-5-3-1 
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Trees 

Def.  An undirected graph is a tree if it is connected and does not 

contain a cycle. 

 

Theorem.  Let G be an undirected graph on n nodes. Any two of the 

following statements imply the third. 

 G is connected. 

 G does not contain a cycle. 

 G has n-1 edges. 



http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon 

Six Degrees of Kevin Bacon is a parlor game based on the "six degrees 

of separation" concept, which posits that any two people on Earth are 

six or fewer acquaintance links apart. That idea eventually morphed 

into this parlor game, wherein movie buffs challenge each other to find 

the shortest path between an arbitrary actor and venerated Hollywood 

character actor Kevin Bacon. It rests on the assumption that any 

individual involved in the Hollywood, California, film industry can be 

linked through his or her film roles to Kevin Bacon within six steps. The 

game requires a group of players to try to connect any such individual 

to Kevin Bacon as quickly as possible and in as few links as possible. It 

can also be described as a trivia game based on the concept of the 

small world phenomenon. 
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http://en.wikipedia.org/wiki/Parlor_game
http://en.wikipedia.org/wiki/Six_degrees_of_separation
http://en.wikipedia.org/wiki/Six_degrees_of_separation
http://en.wikipedia.org/wiki/Character_actor
http://en.wikipedia.org/wiki/Kevin_Bacon
http://en.wikipedia.org/wiki/Hollywood
http://en.wikipedia.org/wiki/Film
http://en.wikipedia.org/wiki/Trivia
http://en.wikipedia.org/wiki/Game
http://en.wikipedia.org/wiki/Small_world_experiment
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Paul Erdos 

David  
Drake 

Charlie  
Colbourn 

Michel 
Deza 

Mike 
Langston 

Brad Sean 

Jen 

A subgraph of 
the Erdős 
number graph 

Brendan 
McKay 
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Rooted Trees 

Rooted tree.  Given a tree T, choose a root node r and orient each edge 

away from r. 

 

Importance.  Models hierarchical structure. 

a tree the same tree, rooted at 1 

v 

parent of v 

child of v 

root r 

out-tree, or rooted arborescence 
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Phylogeny Trees 

Phylogeny trees.  Describe evolutionary history of species.  
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GUI Containment Hierarchy 

Reference:  http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html 

GUI containment hierarchy.  Describe organization of GUI widgets. 



3.2  Graph Traversal 
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Connectivity 

s-t connectivity problem.  Given two node s and t, is there a path 

between s and t? 

 

s-t shortest path problem.  Given two node s and t, what is the length 

of the shortest path between s and t? 

 

Applications. 

 Friendster. 

 Maze traversal. 

 Kevin Bacon number. 

 Erdos number. 

 Fewest number of hops in a communication network. 
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Breadth First Search 

BFS intuition.  Explore outward from s in all possible directions, adding 

nodes one "layer" at a time. 

 

 

BFS algorithm. 

 L0 = { s }. 

 L1 = all neighbors of L0. 

 L2 = all nodes that do not belong to L0 or L1, and that have an edge 

to a node in L1. 

 Li+1 = all nodes that do not belong to an earlier layer, and that have 

an edge to a node in Li. 

 

 

Theorem.  For each i, Li consists of all nodes at distance exactly i 

from s.  There is a path from s to t iff t appears in some layer. 

s L1 L2 L n-1 
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Breadth First Search 

Property.  Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of 

G. Then the level of x and y differ by at most 1. 

L0 

L1 

L2 

L3 
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Breadth First Search:  Analysis 

Theorem.  The above implementation of BFS runs in O(m + n) time if 

the graph is given by its adjacency representation. 

 

Pf. 

 Easy to prove O(n2) running time: 

– at most n lists L[i] 

– each node occurs on at most one list; for loop runs  n times 

– when we consider node u, there are  n incident edges (u, v), 

and we spend O(1) processing each edge 

 

 Actually runs in O(m + n) time: 

– when we consider node u, there are deg(u) incident edges (u, v) 

– total time processing edges is uV deg(u) = 2m     ▪ 

 
each edge (u, v) is counted exactly twice 
in sum: once in deg(u) and once in deg(v) 
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BFS starting at a vertex s using an array for 
the queue: 

Data structures:  
A queue Q[0..(n-1)] of vertices, qfront, qrear. 

parent[i]= BFS tree parent of node i.  
The parent of the root s is s.  
To initialize: 
// Set parent of each node to be -1 to indicate 
// that the vertex has not yet been visited. 
for (i=0; i < n; i++) parent[i]= -1;  
 
// Initialize the queue so that BFS starts at s 
qfront=0; qrear=1; Q[qfront]= s;  
parent[s]=s; 
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while (qfront < qrear) // Q is not empty 

    u= Q[qfront]; qfront++;  

    for each neighbour v of u  

          if (parent[v] == -1) // not visited 

                  parent[v]= u; 

                  Q[qrear]= v; qrear++;  

          end if 

    end for             

end while 
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Red arcs represent parent information: 
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BFI[v]= Breadth first index of v 

          = step at which v is visited. 

The BFI[v] is equal to v’s position in the 
queue. 

 
Renumbering with BFI 
before solving 
independent set can 
make some algorithms 
drastically faster. I 
suspect it would also 
help for dominating set. 
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To initialize: 
// Set parent of each node to be -1 to indicate 
// that the vertex has not yet been visited. 
for (i=0; i < n; i++) parent[i]= -1;  
 
// Initialize the queue so that BFS starts at s 
qfront=0; qrear=1; Q[qfront]= s;  
parent[s]=s; 
 
BFI[s]= 0; 



30 

while (qfront < qrear) // Q is not empty 

    u= Q[qfront]; qfront++;  

    for each neighbour v of u  

          if (parent[v] == -1) // not visited 

                  parent[v]= u; BFI[v]= qrear; 

                  Q[qrear]= v; qrear++;  

          end if 

    end for             

end while 
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Connected Component 

Connected component.  Find all nodes reachable from s. 

 

 

 

 

 

 

 

 

 

 

 

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }. 
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One application: 

How many connected components does a 
graph have and which vertices are in each 
component? 
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To find the connected components: 

for (i=0; i < n; i++) 

      parent[i]= -1; 

nComp= 0; 

for (i=0; i < n; i++) 

      if (parent[i] == -1) 

            nComp++; 

            BFS(i, parent, component, nComp); 
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BFS(s, parent, component, nComp) 
 
// Do not initialize parent. 
 
// Initialize the queue so that BFS starts at s 
 
qfront=0; qrear=1; Q[qfront]= s;  
 
parent[s]=s; 
 
component[s]= nComp; 
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while (qfront < qrear) // Q is not empty 

    u= Q[qfront]; qfront++;  

    for each neighbour v of u  

          if (parent[v] == -1) // not visited 

                  parent[v]= u; component[v]= nComp; 

                  Q[qrear]= v; qrear++;  

          end if 

    end for             

end while 
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Flood Fill 

Flood fill.  Given lime green pixel in an image, change color of entire 

blob of neighboring lime pixels to blue. 

 Node:  pixel. 

 Edge:  two neighboring lime pixels. 

 Blob:  connected component of lime pixels. 

 recolor lime green blob to blue 
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Flood Fill 

Flood fill.  Given lime green pixel in an image, change color of entire 

blob of neighboring lime pixels to blue. 

 Node:  pixel. 

 Edge:  two neighboring lime pixels. 

 Blob:  connected component of lime pixels. 

 recolor lime green blob to blue 
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Connected Component 

Connected component.  Find all nodes reachable from s. 

 

 

 

 

 

 

 

 

 

 

 

Theorem.  Upon termination, R is the connected component containing s. 

 BFS = explore in order of distance from s. 

 DFS = explore in a different way. 

s 

u v 

R 

it's safe to add v 



3.4  Testing Bipartiteness 
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Bipartite Graphs 

Def.  An undirected graph G = (V, E) is bipartite if the nodes can be 

colored red or blue such that every edge has one red and one blue end. 

 

Applications. 

 Stable marriage:  men = red, women = blue. 

 Scheduling:  machines = red, jobs = blue. 

 

a bipartite graph 
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Testing Bipartiteness 

Testing bipartiteness.   Given a graph G, is it bipartite? 

 Many graph problems become: 

– easier if the underlying graph is bipartite (matching) 

– tractable if the underlying graph is bipartite (independent set) 

 Before attempting to design an algorithm, we need to understand 

structure of bipartite graphs. 

v1 

v2 v3 

v6 v5 v4 

v7 

v2 

v4 

v5 

v7 

v1 

v3 

v6 

a bipartite graph G another drawing of G 
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An Obstruction to Bipartiteness 

Lemma.  If a graph G is bipartite, it cannot contain an odd length cycle. 

 

Pf.  Not possible to 2-color the odd cycle, let alone G. 

bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 
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Bipartite Graphs 

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers 

produced by BFS starting at node s.  Exactly one of the following holds. 

(i)   No edge of G joins two nodes of the same layer, and G is bipartite. 

(ii)  An edge of G joins two nodes of the same layer, and G contains an 

   odd-length cycle (and hence is not bipartite). 

 

Case (i) 

L1 L2 L3 

Case (ii) 

L1 L2 L3 
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Bipartite Graphs 

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers 

produced by BFS starting at node s.  Exactly one of the following holds. 

(i)   No edge of G joins two nodes of the same layer, and G is bipartite. 

(ii)  An edge of G joins two nodes of the same layer, and G contains an 

   odd-length cycle (and hence is not bipartite). 

 

Pf.  (i) 

 Suppose no edge joins two nodes in adjacent layers. 

 By previous lemma, this implies all edges join nodes on same level. 

 Bipartition:  red = nodes on odd levels, blue = nodes on even levels. 

Case (i) 

L1 L2 L3 
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Bipartite Graphs 

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers 

produced by BFS starting at node s.  Exactly one of the following holds. 

(i)   No edge of G joins two nodes of the same layer, and G is bipartite. 

(ii)  An edge of G joins two nodes of the same layer, and G contains an 

   odd-length cycle (and hence is not bipartite). 

 

Pf.  (ii) 

 Suppose (x, y) is an edge with x, y in same level Lj. 

 Let z = lca(x, y) = lowest common ancestor. 

 Let Li be level containing z. 

 Consider cycle that takes edge from x to y, 

then path from y to z, then path from z to x. 

 Its length is  1  +   (j-i)  +  (j-i),  which is odd.  ▪ 

z = lca(x, y) 

(x, y) path from 
y to z 

path from 
z to x 
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Obstruction to Bipartiteness 

Corollary.  A graph G is bipartite iff it contain no odd length cycle. 

 

5-cycle C 

bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 


