
1

2

A Simple Algorithm for Dominating Set

3

A dominating set of a graph G is a subset D of the
vertices of G such that every vertex v of G is either in
the set D or v has at least one neighbour that is in D.

4

The Cartesian product, G □ H , of graphs G and H is a
graph F such that
1. V(F) = V(G) × V(H); and
2. any two vertices (u,u') and (v,v') are adjacent in F
 if and only if either:
 u = v and u' is adjacent with v' in H, or
 u' = v' and u is adjacent with v in G.

http://mathworld.wolfram.com/GraphCartesianProduct.html

5

http://cnx.org/content/m34835/latest/?collection=col10523/latest

6

Vizing's conjecture
concerns a relation
between the domination
number and the cartesian
product of graphs. This
conjecture was first
stated by Vadim G. Vizing
(1968), and states that, if
γ(G) denotes the minimum
number of vertices in a
dominating set for G, then
γ(G ◻ H) ≥ γ(G)γ(H).

Conjecure predicts ≥ 1 for
this graph so it is not tight.

http://en.wikipedia.org/wiki/Vizing's_conjecture

7

A recent survey paper:

Brešar, Boštjan; Dorbec, Paul;

Goddard, Wayne; Hartnell, Bert L.;

Henning, Michael A.; Klavžar, Sandi;

Rall, Douglas F. Vizing's conjecture: a

survey and recent results. J. Graph

Theory 69 (2012), no. 1, 46-76.

8

Adjacency list:

9

Adjacency matrix:

Input as:

5

2 1 3

4 0 3 4 2

2 1 4

3 0 4 1

3 1 3 2

A simple but reasonable fast dominating set
algorithm (you can implement this for milestone 1):

Data structures:
The graph:
n = number of vertices
A[0..(n-1)][0..(n-1)] = adjacency matrix, but I
changed the diagonal so that the values are all 1’s
(because a vertex dominates itself).

DELTA= maximum
degree of a vertex v

Each vertex has a status:

white: not decided

blue: excluded from dominating set

red: included in dominating set

I did not actually record these explicitly
although it could be useful in algorithm
variants.

To record a partial
dominating set:

size
dom[0..(n-1)]

or the minimum
dominating set found
so far:

min_size
min_dom[0..(n-1)]

n_dominated= number of
dominated vertices.

For each vertex v:
num_dominated[v]= number of times it is
dominated by a red vertex.

num_choice[v]= number of times it could
be dominated if all white vertices were
red ones. If num_choice[v] is 0 for some
vertex, we can back up (solution cannot
be completed to a dominating set).

14

When programming recursive algorithms,
it helps in debugging to have a variable
level representing the level of recursion.

Initial call:
 min_dom_set(0, …

Declaration of function:
int min_dom_set(int level, …

Recursive calls:
 min_dom_set(level+1, …

15

At the top:

#include <stdio.h>

#include <stdlib.h>

#define NMAX 500

#define DEBUG 1

16

Debugging:

#if DEBUG
 printf("Level %3d: ", level);
 print_vector(size, dom);
 printf("Number of vertices dominated: %3d\n",
 n_dominated);
 printf("Number of choices per vertex:\n");
 print_vector(n, num_choice);
 printf("Number of times dominated:\n");
 print_vector(n, num_dominated);
#endif

17

At a given level, I decide the status of
vertex number level.

I first try making it blue and then red.
Before returning: change it back to white.

18

At level 0 we initialize the data
structures first:

Implicit: all vertices are white.
n_dominated=0
num_choice[v]= degree of v + 1
num_dominated[v]= 0

size=0
dom[i]= no values assigned since size is 0
min_size= n
min_dom[i]= i for i= 0 to n-1

19

Tests used to check if we should backtrack
(not completable to a dominating set
smaller than the min so far).

If for any vertex v, num_choice[v] is 0
then return.

Set n_extra=
𝑢

Δ+1

u= number of undominated vertices
Δ = maximum degree of a vertex
If size + n_extra ≥ min then return.

20

Termination condition:

At level n (all vertices v have a status, and
num_choice[v] is at least 1 so dominated)
or if all vertices are dominated:

If size < min_size
 copy the current dominating
 set dom to min_dom
 and set min_size= size.
End if

return

21

The exhaustive backtrack:
Set u= level.
Try vertex u as blue (excluded from
dominating set):

For each neighbour v of u as
recorded in A,
decrement num_choice[v].

Call the routine recursively.

For each neighbour v of u as
recorded in A,
increment num_choice[v].

Recursive routines

should restore data

structures to avoid

need to copy them.

22

Try vertex u as red (in dominating set):

Add u to dom.
For each neighbour v of u as
recorded in A, increment
num_dominated[v].
Update n_dominated.

Call the routine recursively.

Restore data structures and
return.

Recursive routines

should restore data

structures to avoid

need to copy them.

23

Level 0: initially all vertices are white:

24

Levels 0, 1, 2: vertices are set to blue
initially. Level 3: try blue and then 0 has
num_choice[0]=0 so back up from level 4
then color 3 red.

25

Levels 4, 5 choose blue initially, level 6
tries blue (but then num_choice[1]=0 at
level 7) and then red.

26

Levels 7, 8 try blue initially. Level 9 try
blue (but then num_choice[2]= 0 at level
10) and then red.

27

Record this (min_size, min_dom) since
better than best so far (10) and return.

28

At level 8, try vertex 8 as red. At level 9:
size=3, n_extra= ⌈2/(3+1)⌉ =1
size + n_extra = 4 ≥ 3 = min_size so return.

29

At level 7, try vertex 7 as red. At level 8:
size=3, n_extra= ⌈2/(3+1)⌉ =1
size + n_extra = 4 ≥ 3 = min_size so return.

30

At level 5, try vertex 5 as red. At level 6:
size=2, n_extra= ⌈4/(3+1)⌉ =1
size + n_extra = 3 ≥ 3 = min_size so return.

31

At level 4, try vertex 4 as red. At level 5:
size=2, n_extra= ⌈3/(3+1)⌉ =1
size + n_extra = 3 ≥ 3 = min_size so return.

32

At level 42 try vertex 2 as red. At level 3:
size=1, n_extra= ⌈6/(3+1)⌉ = 2
size + n_extra = 3 ≥ 3 = min_size so return.

Similarly, we return at levels 1 and 0 after
trying red.

33

Fullerenes

• Correspond to 3-regular planar graphs.

• All faces are size 5 or 6.

• Euler’s formula: exactly 12 pentagons.

34

35

Command file for running on small fullerenes (run_com):

time a.out 1 < c020 > o020

time a.out 1 < c024 > o024

time a.out 1 < c026 > o026

time a.out 1 < c028 > o028

time a.out 1 < c030 > o030

time a.out 1 < c032 > o032

time a.out 1 < c034 > o034

time a.out 1 < c036 > o036

time a.out 1 < c038 > o038

time a.out 1 < c040 > o040

time a.out 1 < c042 > o042

time a.out 1 < c044 > o044

time a.out 1 < c046 > o046

time a.out 1 < c048 > o048

time a.out 1 < c050 > o050

time a.out 1 < c052 > o052

time a.out 1 < c054 > o054

time a.out 1 < c056 > o056

time a.out 1 < c058 > o058

time a.out 1 < c060 > o060

To run this:
source run_com

36

Timing data for all

small fullerenes:

n # time

20 1 0

24 1 0

26 1 0.004

28 2 0

30 3 0.004

32 6 0.02

34 6 0.016

36 15 0.076

38 17 0.092

40 40 0.672

For 40: 0.672u 0.000s 0:00.67 100.0% 0+0k 0+24io 0pf+0w

n lb # time

42 11 45 0.504

44 11 89 2.6

46 12 116 2.728

48 12 299 13.66

50 13 271 13.592

52 13 437 58.023

54 14 580 58.44

56 14 924 295.042

58 15 1205 248.143

60 15 1812 1109.341 = 18.5

minutes

= 4.9

minutes

37

n lb # time Adj. list

42 11 45 0.504 0.104

44 11 89 2.6 0.532

46 12 116 2.728 0.544

48 12 299 13.66 2.62

50 13 271 13.592 2.54

52 13 437 58.023 10.58

54 14 580 58.44 10.38

56 14 924 295.042 51.46

58 15 1205 248.143 42.11

60 15 1812 1109.341 183.7

38

Only fullerene isomer C_56:649 has
dominating set order 14.

39

n LB #LB #LB+1 #LB+2 Adj. list

40 10 1 21 18 0.156

42 11 1 44 0 0.104

44 11 0 55 34 0.532

46 12 6 110 0 0.544

48 12 1 109 89 2.62

50 13 6 265 0 2.54

52 13 0 270 167 10.58

54 14 19 561 0 10.38

56 14 1 470 453 51.46

58 15 23 1182 0 42.11

60 15 0 1014 798 183.7

40

Important: all computations should be carefully
double checked by at least 2 different people with
independent programs.

I have NOT double checked these results.
But you can double check them for me.

Some published papers were buggy:
Initial proof of 4-color theorem.
Lam, C. W. H.; Thiel, L.; and Swiercz, S. "The
Nonexistence of Finite Projective Planes of Order
10." Canad. J. Math. 41, 1117-1123, 1989.

41

Some conjectures for fullerenes:

If n is divisible by 4 then the minimum dominating
set order is either n/4, n/4 +1, or n/4+2. Can we
characterize the cases that are n/4?

If n is not divisible by 4 (n is congruent to 2 mod 4)
then the minimum dominating set order is
𝑛

4
 or

𝑛

4
 +1.

There is a linear time (or maybe O(n2) time)
algorithm for finding a minimum size dominating set
of a fullerene.

