
1 



2 

A Simple Algorithm for Dominating Set 
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A dominating set of a graph G is a subset D of the 
vertices of G such that every vertex v of G is either in 
the set D or v has at least one neighbour that is in D.  
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The Cartesian product, G □ H , of graphs G and H is a 
graph F such that 
1. V(F) = V(G) × V(H); and 
2. any two vertices (u,u') and (v,v') are adjacent in F 
     if and only if either:  
     u = v and u' is adjacent with v' in H, or 
     u' = v' and u is adjacent with v in G. 
 

http://mathworld.wolfram.com/GraphCartesianProduct.html 
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http://cnx.org/content/m34835/latest/?collection=col10523/latest 
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Vizing's conjecture 
concerns a relation 
between the domination 
number and the cartesian 
product of graphs. This 
conjecture was first 
stated by Vadim G. Vizing 
(1968), and states that, if 
γ(G) denotes the minimum 
number of vertices in a 
dominating set for G, then  
γ(G ◻ H) ≥ γ(G)γ(H). 
 
Conjecure predicts ≥ 1 for 
this graph so it is not tight. 

http://en.wikipedia.org/wiki/Vizing's_conjecture 
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A recent survey paper: 

 

 

Brešar, Boštjan; Dorbec, Paul; 

Goddard, Wayne; Hartnell, Bert L.; 

Henning, Michael A.; Klavžar, Sandi; 

Rall, Douglas F. Vizing's conjecture: a 

survey and recent results. J. Graph 

Theory 69 (2012), no. 1, 46-76. 
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Adjacency list: 



9 

Adjacency matrix: 

Input as: 

5 

2 1 3 

4 0 3 4 2 

2 1 4 

3 0 4 1 

3 1 3 2 



A simple but reasonable fast dominating set 
algorithm (you can implement this for milestone 1): 
 
Data structures: 
The graph: 
n = number of vertices 
A[0..(n-1)][0..(n-1)] = adjacency matrix, but I 
changed the diagonal so that the values are all 1’s 
(because a vertex dominates itself). 
 

DELTA= maximum 
degree of a vertex v 



Each vertex has a status: 
 
white: not decided 
 
blue: excluded from dominating set 
 
red: included in dominating set 
 
I did not actually record these explicitly 
although it could be useful in algorithm 
variants. 



To record a partial 
dominating set: 
 
size 
dom[0..(n-1)] 
 
or the minimum 
dominating set found 
so far: 
 
min_size  
min_dom[0..(n-1)] 
 



n_dominated= number of  
dominated vertices. 
 
 
For each vertex v: 
num_dominated[v]= number of times it is 
dominated by a red vertex. 
 
num_choice[v]= number of times it could 
be dominated if all white vertices were 
red ones. If num_choice[v] is 0 for some 
vertex, we can back up (solution cannot 
be completed to a dominating set). 
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When programming recursive algorithms, 
it helps in debugging to have a variable 
level representing the level of recursion. 
 
Initial call: 
     min_dom_set(0, … 
 
Declaration of function: 
int min_dom_set(int level, … 
 
Recursive calls: 
     min_dom_set(level+1, … 
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At the top: 
 
#include <stdio.h> 
 
#include <stdlib.h> 
 
#define NMAX 500 
 
#define DEBUG 1 
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Debugging: 
 
#if DEBUG 
    printf("Level %3d: ", level); 
    print_vector(size, dom); 
    printf("Number of vertices dominated: %3d\n", 
                 n_dominated); 
    printf("Number of choices per vertex:\n"); 
    print_vector(n, num_choice); 
    printf("Number of times dominated:\n"); 
    print_vector(n, num_dominated); 
#endif 
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At a given level, I decide the status of 
vertex number level.  
 
I first try making it blue and then red. 
Before returning: change it back to white. 
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At level 0 we initialize the data 
structures first: 
 
Implicit: all vertices are white. 
n_dominated=0 
num_choice[v]= degree of v + 1 
num_dominated[v]= 0 
 
size=0  
dom[i]= no values assigned since size is 0 
min_size= n 
min_dom[i]= i for i= 0 to n-1 
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Tests used to check if we should backtrack 
(not completable to a dominating set 
smaller than the min so far). 
 
If for any vertex v, num_choice[v] is 0 
then return. 
 

Set n_extra= 
𝑢

Δ+1
 

u= number of undominated vertices 
Δ = maximum degree of a vertex 
If size + n_extra ≥ min then return. 
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Termination condition: 
 
At level n (all vertices v have a status, and 
num_choice[v] is at least 1 so dominated) 
or if all vertices are dominated: 
 
If size < min_size 
       copy the current dominating  
       set dom to min_dom 
       and set min_size= size. 
End if 
 
return 
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The exhaustive backtrack: 
Set u= level. 
Try vertex u as blue (excluded from 
dominating set): 
 
 
 

For each neighbour v of u as 
recorded in A, 
decrement num_choice[v]. 
 
Call the routine recursively. 
 

 
For each neighbour v of u as 
recorded in A, 
increment num_choice[v]. 
 

Recursive routines 

should restore data 

structures to avoid 

need to copy them. 
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Try vertex u as red (in dominating set): 
 
 
 

Add u to dom. 
For each neighbour v of u as 
recorded in A, increment 
num_dominated[v]. 
Update n_dominated. 
 
Call the routine recursively. 
 
 
Restore data structures and 
return. 
 

Recursive routines 

should restore data 

structures to avoid 

need to copy them. 
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Level 0: initially all vertices are white: 
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Levels 0, 1, 2: vertices are set to blue 
initially. Level 3: try blue and then 0 has 
num_choice[0]=0 so back up from level 4 
then color 3 red. 



25 

Levels 4, 5 choose blue initially, level 6 
tries blue (but then num_choice[1]=0 at 
level 7) and then red. 
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Levels 7, 8 try blue initially. Level 9 try 
blue (but then num_choice[2]= 0 at level 
10) and then red. 
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Record this (min_size, min_dom) since 
better than best so far (10) and return. 
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At level 8, try vertex 8 as red. At level 9: 
size=3, n_extra= ⌈2/(3+1)⌉ =1 
size + n_extra = 4 ≥ 3 = min_size so return. 
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At level 7, try vertex 7 as red. At level 8: 
size=3, n_extra= ⌈2/(3+1)⌉ =1 
size + n_extra = 4 ≥ 3 = min_size so return. 
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At level 5, try vertex 5 as red. At level 6: 
size=2, n_extra= ⌈4/(3+1)⌉ =1 
size + n_extra = 3 ≥ 3 = min_size so return. 
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At level 4, try vertex 4 as red. At level 5: 
size=2, n_extra= ⌈3/(3+1)⌉ =1 
size + n_extra = 3 ≥ 3 = min_size so return. 
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At level 42 try vertex 2 as red. At level 3: 
size=1, n_extra= ⌈6/(3+1)⌉ = 2 
size + n_extra = 3 ≥ 3 = min_size so return. 
 
Similarly, we return at levels 1 and 0 after 
trying red. 
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Fullerenes 

• Correspond to 3-regular planar graphs. 

• All faces are size 5 or 6. 

• Euler’s formula: exactly 12 pentagons. 
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Command file for running on small fullerenes (run_com): 

time  a.out  1 < c020 > o020 

time  a.out  1 < c024 > o024 

time  a.out  1 < c026 > o026 

time  a.out  1 < c028 > o028 

time  a.out  1 < c030 > o030 

time  a.out  1 < c032 > o032 

time  a.out  1 < c034 > o034 

time  a.out  1 < c036 > o036 

time  a.out  1 < c038 > o038 

time  a.out  1 < c040 > o040 

time  a.out  1 < c042 > o042 

time  a.out  1 < c044 > o044 

time  a.out  1 < c046 > o046 

time  a.out  1 < c048 > o048 

time  a.out  1 < c050 > o050 

time  a.out  1 < c052 > o052 

time  a.out  1 < c054 > o054 

time  a.out  1 < c056 > o056 

time  a.out  1 < c058 > o058 

time  a.out  1 < c060 > o060 

 

To run this: 
source run_com 
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Timing data for all  

small fullerenes: 

 
n # time 

20 1 0 

24 1 0 

26 1 0.004 

28 2 0 

30 3 0.004 

32 6 0.02 

34 6 0.016 

36 15 0.076 

38 17 0.092 

40 40 0.672 

For 40: 0.672u 0.000s 0:00.67 100.0%  0+0k 0+24io 0pf+0w 

n lb # time 

42 11 45     0.504 

44 11 89 2.6 

46 12 116     2.728 

48 12 299 13.66 

50 13 271   13.592 

52 13 437   58.023 

54 14 580 58.44 

56 14 924 295.042 

58 15 1205 248.143 

60 15 1812 1109.341 = 18.5 

minutes 

= 4.9  

minutes 
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n lb # time Adj. list 

42 11 45     0.504 0.104 

44 11 89 2.6 0.532 

46 12 116     2.728 0.544 

48 12 299 13.66 2.62 

50 13 271   13.592 2.54 

52 13 437   58.023 10.58 

54 14 580 58.44 10.38 

56 14 924 295.042 51.46 

58 15 1205 248.143 42.11 

60 15 1812 1109.341 183.7 
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Only fullerene isomer C_56:649 has 
dominating set order 14. 
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n LB #LB #LB+1 #LB+2 Adj. list 

40 10 1 21 18 0.156 

42 11 1 44  0 0.104 

44 11 0 55 34 0.532 

46 12 6 110 0 0.544 

48 12 1 109 89 2.62 

50 13 6 265 0 2.54 

52 13 0 270 167 10.58 

54 14 19 561 0 10.38 

56 14 1 470 453 51.46 

58 15 23 1182 0 42.11 

60 15 0 1014 798 183.7 
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Important: all computations should be carefully 
double checked by at least 2 different people with 
independent programs. 
 
I have NOT double checked these results. 
But you can double check them for me. 
 
Some published papers were buggy: 
Initial proof of 4-color theorem. 
Lam, C. W. H.; Thiel, L.; and Swiercz, S. "The 
Nonexistence of Finite Projective Planes of Order 
10." Canad. J. Math. 41, 1117-1123, 1989.  
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Some conjectures for fullerenes: 
 
If n is divisible by 4 then the minimum dominating 
set order is either n/4, n/4 +1,  or n/4+2. Can we 
characterize the cases that are n/4? 
 
If n is not divisible by 4 (n is congruent to 2 mod 4) 
then the minimum dominating set order is  
𝑛

4
  or 

𝑛

4
 +1. 

 
There is a linear time (or maybe O(n2) time) 
algorithm for finding a minimum size dominating set 
of a fullerene. 


