

What is the minimum dominating set sizes for these graphs?

The degree bound indicates maybe two degree 4 vertices could suffice but since the neighbourhoods overlap too much, we need 3.

Simple degree bound: if the maximum degree of a vertex in the graphs is Δ then the minimum dominating set size is at least $n /(\Delta+1)$.

But we only need 2 vertices from this subgraph:

We need 3.

But we only need 2 vertices from this subgraph:

We need 4.

But we only need 2 vertices from this subgraph:

If at least one yellow vertex is red, then we can find a dominating set using on 2 vertices from the subgraph:

If at no yellow vertices are used, we need 6 vertices instead of 5, we need 3 from the subgraph:

Class NP

A decision problem (yes/no question) is in the class NP if it has a nondeterministic polynomial time algorithm. Informally, such an algorithm:
1.Guesses a solution (nondeterministically).
2. Checks deterministically in polynomial time that the answer is correct.

Or equivalently, when the answer is "yes", there is a certificate (a solution meeting the criteria) that can be verified in polynomial time (deterministically).

Example problem which is in P and NP:
Minimum Weight Spanning Tree (CSC 225).
Input: Graph G, integer k.
Question: Does G have a spanning tree of weight at most k ?

If you are provided with a tree with weight at most k as part of the solution, the answer can be verified in $O(n)$ time.

Matching is in NP: Given a graph G and integer k, does G have a k-edge matching? edges.

Certificate, k=5:
$(a, f)(b, g)(c, h)$
$(d, i)(e, j)$

Hamilton Cycle is in NP: Input graph G.

Does G have a Ham. cycle?
Certificate:
$$
1,2,3,5
$$
$$
6,7,11,12
$$
$$
10,8,9,4
$$

Picture from: http://mathoverflow.net/faq ${ }_{4}$

Does $P=$ NP? the Clay Mathematics Institute has offered a $\$ 1$ million US prize for the first correct proof.

Some problems in NP not known to be in P: Hamilton Path/Cycle
Independent Set
Satisfiability
Note: Matching is in P. Learn more in a graph algorithms class.

NP-completeness

I can' \dagger find an efficient algorithm,
I guess I'm just too dumb.

I can't find an efficient algorithm, because no such

I can't find an efficient algorithm, but neither can all these famous people.

NP-complete Problems
The class of problems in NP which are the "hardest" are called the NP-complete problems.

A problem Q in NP is NP-complete if the existence of a polynomial time algorithm for Q implies the existence of a polynomial time algorithm for all problems in NP.
Steve Cook in 1971 proved that SAT is NPcomplete. Proof: will be given in our las \dagger class. Other problems: use reductions.

Bible for NP-

 completeness:M. R. Garey and D.
S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompletness, W. H. Freeman, 1s \dagger ed. (1979).

COMPUTERS AND INTRACTABILITY A Guide to the Theory of NP-Completeness

SAT (Satisfiability)

Variables: $u_{1}, u_{2}, u_{3}, \ldots u_{k}$.
A literal is a variable u_{i} or the negation of a variable $\neg \mathrm{u}_{\mathrm{i}}$.
If u is set to true then $\neg u$ is false and if u is set to false then $\neg u$ is true.

A clause is a set of literals. A clause is true if at least one of the literals in the clause is true.

The input to SAT is a collection of clauses.

This SAT problem has solution $\mathrm{u}_{1}=\mathrm{T}, \mathrm{u}_{2}=\mathrm{F}, \mathrm{u}_{3}=\mathrm{T}, \mathrm{u}_{4}=\mathrm{F}$
$\left(u_{1} O R u_{2} O R u_{4}\right)$ AND $\left(\neg u_{2} O R u_{4}\right)$ AND $\left(\neg u_{1} O R u_{3}\right)$ AND $\left(\neg u_{4} O R \neg u_{1}\right)$

Does this SAT problem have a solution?
$\left(\begin{array}{ll}u_{1} O R & u_{2}\end{array}\right)$ AND $\left(\neg u_{2} O R u_{3}\right)$ AND
$\left(\neg \mathrm{u}_{3} \mathrm{OR} \neg \mathrm{u}_{1}\right)$ AND $\left(\neg \mathrm{u}_{2} \mathrm{OR} \neg \mathrm{u}_{3}\right)$ AND
$\left(u_{3} O R \neg u_{1}\right)$

History of NP-completeness Reductions

3-SAT- each clause must contain exactly 3 variables (assignment- at most 3).
Given: SAT is NP-complete.

Theorem: 3-SAT is NP-Complete.

Theorem: If we can solve the dominating set problem in polynomial time, then we can solve 3-SAT in polynomial time.

Or equivalently: Given that 3-SAT is an NP-complete problem, we prove that Dominating Set is NP-complete.
3-SAT Problem:
(x 1 or $x 1$ or $x 2$) AND (\neg x1 or $\neg \times 2$ or $\neg x 2$)
AND ($-x 1$ or $x 2$ or $\times 3$)

