
1

What do these TM’s do on input on input
001? Standard input format: (s, #001[#]).

M4

M1
M2

M3

2

Theorem: Turing decidable languages are
closed under difference.

Proof:

Let M1 be a TM which decides L1, and

let M2 be a TM which decides L2.

Let C be a TM which makes a copy of the

input: (s, # w #) ├* (h, # w # w [#]).

Finish the proof by drawing a machine
schema for a TM which decides L= L1 - L2.

3

Extensions of TM’s/UTM’s

It can be proven that adding extra power to
a TM by adding multiple tracks, tapes, or
tape heads does not change what it is able
to compute. These more powerful models
can be simulated on our single tape/one
head machine.

Turing Machine by Tom Dunne
American Scientist, March-April
2002

4

a b a a # b b #… …

Two-way infinite tape:

a a a # b b b

a b a b # a b

…

…

Multiple tapes:

a b a a b # #

b a b b a # #

…

Multiple tracks:

5

a b b # # # #

Two tracks- Each tape square has one symbol
on upper track and one symbol on lower track:

#

…# a b b # # # # #

On standard TM initially:

To simulate this on a standard TM:

Initial alphabet is s1, s2, … sk.

New symbols= { : i=1, 2, …k, j=1, 2, …k}

…

6

#

…# a b b # # # # #

Reformat initial tape:

Each time TM moves onto a # square,
reformat it to be:

For each state q add a transition:

δ(q , #) → (q,)

7

a b a a # b b #… …

Two-way infinite tape:

How can this be simulated with a
Turing machine that has 2 tracks?

8

Conceptually, the infinite tape is
“bent” and wrapped around at the
as follows, with $ to mark the
bend:

9

Shift right and convert to two track
mode with end of tape marker:

…
To initialize the tape:

10

w [#]
changes to
[#] # w #

M1:

M2: 2-track formatting.

11

Old Transitions:

s # s L
s a h #
s b s R

Add:
1. Upper and lower track states and

transitions.
2. Reformat of # squares to 2-track.
3. If we hit $ change tracks.

12

Careful: if we are going left on the
original tape, this corresponds to
left for squares 0, 1, 2, …
but right for squares -1, -2, -3, …
on the 2-track simulation.

13

Multiple tape heads:

a b b a a

0 0 0 0 0 1 0

0 1 0 0 0 0 0

a a b b a a

#

Keep track of tape head positions
on extra tracks:

14

Multiple tapes:

$ # b b a b b #

$ 0 1 0 0 0 0 0

$ # b b a b b #

$ 0 0 0 1 0 0 0

#

15

Universal Turing Machines

A Universal TM (UTM) is like my java TM
simulator but written in TM. We can argue
that a 3-tape TM can be used to create a
UTM which can execute instructions from
an arbitrary TM program.

The existence of a UTM is
used to acquire some
problems which can be
proven to not be Turing-
decidable.

Alan Turing (1912-1954)

16

Universal TM’s:

the birth of the
idea of having
programmable
computers.

Software can be
used instead of
designing new
hardware.

"Universal Turing
Machine“ Jin Wicked.

17

Problem: A UTM is a Turing machine and
hence it must have a fixed finite alphabet.

But it must be able to simulate any TM
with an arbitrary alphabet.

How can we do this?

Hint: Our computers which we use to run
Java and C programs have an underlying
alphabet of 0/1. But they still can
represent lots of symbols!

18

First number the states and symbols:

State Sym
Next

state
Head

s # s L

s a t a

s b t L

t # h #

t a t R

t b t b

Num State Head

0 h L

1 s R

2 t #

3 a

4 b

19

Num State “State” Head “Head”

0 h q00 L a000

1 s q01 R a001

2 t q10 # a010

3 a a011

4 b a100

Assumptions: h is always state 0.

The start state is state 1.

The symbols always have L= 0, R = 1, # = 2.

20

State Sym
Next

state
Head

s # s L

s a t a

s b t L

t # h #

t a t R

t b t b

0 h q00 L a000

1 s q01 R a001

2 t q10 # a010

3 a a011

4 b a100

“M” is a string representing a TM M which
uses the alphabet { (,), q, a, 0, 1, ,}

“w” is a string representing w which uses
the alphabet {a, 0, 1}.

21

State Sym
Next

state
Head

s # s L

s a t a

s b t L

t # h #

t a t R

t b t b

0 h q00 L a000

1 s q01 R a001

2 t q10 # a010

3 a a011

4 b a100

“M”=

(q01, a010, q01, a000), (q01, a011, q10, a011), (q01, a100, q10, a000),

(q10, a010, q00, a010), (q10, a011, q10, a001), (q10, a100, q10, a100)

“abaa”= a011a100a011a011

“#ab#”= a010a011a100a010

22

Initially:

Tape 1: # “M” [#]

Tape 2: #q00… 01[#]

Tape 3: # ”Tape contents for M” #

#ab[#] → #a010a011a100[a]010#

Original TM M:

Head moves left/right: move head on third tape
left/right until reaching “a” (or #).

Blanks to right of input: reformat to “#”= a0…10.

Hit blank to left of input: original TM hangs.

23

To do one move:

Search for the current symbol (head on
tape 3 is on “a” of its encoding) and the
current state (from tape 2) in “M” on tape 1.

When the applicable transition is found:

1. update the current state name on tape 2,

2. move the head on tape 3 (head instruction
is a0…0 = L or a00..01 = R) or replace the
current symbol encoding on tape 3.

24

Sample final exam question:
For each of the following languages, indicate the most
restrictive of the classes below into which it falls
(a) finite
(b) regular
(c) context-free
(d) Turing-decidable
(e) Turing-acceptable
(f) None of the above.

1. Ф
2. (a ⋃ b)*

3. {an bn : n ≥ 0}
4. {w {#,(,),0,1,a,q,,}*: w=“M” for some TM M}
5. H = { “M” ”w” : M halts when run on input w}
6. { “M” ”w” : M does not halt on input w}

