What do these TM's do on input on input 001? Standard input format: (s, \#001[\#]).

$\xrightarrow{M_{2}} \bigcap_{R}$

Theorem: Turing decidable languages are closed under difference.

Proof:
Let M_{1} be a TM which decides L_{1}, and let M_{2} be a $T M$ which decides L_{2}.

Let C be a TM which makes a copy of the input: (s, \# w \#) ト* (h, \# w \# w [\#]).

Finish the proof by drawing a machine schema for a TM which decides $L=L_{1}-L_{2}$.

Extensions of TM's/UTM's

It can be proven that adding extra power to a TM by adding multiple tracks, tapes, or tape heads does not change what it is able to compute. These more powerful models can be simulated on our single tape/one head machine.

Turing Machine by Tom Dunne American Scientist, March-April 2002

Two-way infinite tape:

$\#$	a	b	a	a	$\#$	b	b	$\#$

Multiple tapes:

| $\#$ | a | a | a | $\#$ | b | b | b | $\#$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \ldots | | | | | | | | |
| \# | a | b | a | b | \# | a | b | $\#$ |$..$

Multiple tracks:

$\#$	a	b	a	a	b	$\#$	$\#$	$\#$
$\#$	b	a	b	b	a	$\#$	$\#$	$\#$

Two tracks- Each tape square has one symbol on upper track and one symbol on lower track:

$\#$	a	b	b	$\#$	$\#$	$\#$	$\#$	$\#$
$\#$	$\#$	$\#$	$\#$	$\#$	$\#$	$\#$	$\#$	$\#$

To simulate this on a standard TM:
On standard TM initially:

\#	a	b	b	\#	\#	\#	$\#$	$\#$

Initial alphabet is $s 1, s 2, \ldots$ sk.
New symbols $=\left\{\binom{s i}{s j}: i=1,2, \ldots k, j=1,2, \ldots k\right\}$

$\#$	a	b	b	$\#$	$\#$	$\#$	$\#$	$\#$
...								

Reformat initial tape:

	\#	\#	\#

Each time TM moves onto a \# square, reformat it to be: ($\binom{*}{\#}$
For each state q add a transition:
$\delta(q, \#) \rightarrow\left(q,\left(\begin{array}{l}\#\end{array}\right)\right)$

Two-way infinite tape:

How can this be simulated with a Turing machine that has 2 tracks?

Conceptually, the infinite tape is "bent" and wrapped around at the as follows, with \$ to mark the bend:

To initialize the tape:

$\#$	b	a	b	$\#$	$\#$	$\#$	$\#$	$\#$

Shift right and convert to two track mode with end of tape marker:

$\$$	$\#$	b	a	b	$\#$	$\#$	$\#$	$\#$	$\#$
	$\#$	$\#$	$\#$	$\#$	$\#$	$\#$	$\#$	$\#$	$\#$

$M_{1}:$

\# w [\#] changes to [\#] \# w \#
M_{2} : 2-track formatting.

Old Transitions:

s \# s L
s a h \#
$s b s R$
Add:

1. Upper and lower track states and transitions.
2. Reformat of \# squares to 2-track.
3. If we hit \$ change tracks.

Careful: if we are going left on the original tape, this corresponds to left for squares $0,1,2, \ldots$ but right for squares $-1,-2,-3, \ldots$ on the 2-track simulation.

-4	-3	-2	-1	0	1	2	3

$\$$	0	1	2	3
	$1-$	$S-$	$\varepsilon-$	+-

Multiple tape heads:

Keep track of tape head positions on extra tracks:

$\#$	a	b	b	a	a	$\#$			
0	0	0	0	0	1	0	$\#$	$\#$	$\#$
0	1	0	0	0	0	0			

Multiple tapes:

$\$$	$\#$	b	b	a	b	b	\#			
$\$$	0	1	0	0	0	0	0		\#	\#
$\$$	$\#$	b	b	a	b	b	$\#$			
$\$$	0	0	0	1	0	0	0			

Universal Turing Machines

A Universal TM (UTM) is like my java TM simulator but written in TM. We can argue that a 3-tape TM can be used to create a UTM which can execute instructions from an arbitrary TM program.

The existence of a UTM is used to acquire some problems which can be proven to not be Turingdecidable.

Alan Turing (1912-1954)

Universal TM's:
the birth of the idea of having programmable computers.

Software can be used instead of designing new hardware.
"Universal Turing Machine" Jin Wicked.

Problem: A UTM is a Turing machine and hence it must have a fixed finite alphabet.

But it must be able to simulate any TM with an arbitrary alphabet.
How can we do this?
Hint: Our computers which we use to run Java and C programs have an underlying alphabet of 0/1. But they still can represent lots of symbols!

First number the states and symbols:

State	Sym	Next state	Head
s	$\#$	s	L
s	a	t	a
s	b	t	L
t	$\#$	h	$\#$
t	a	t	R
t	b	t	b

Num	State	Head
0	h	L
1	s	R
2	t	$\#$
3		a
4		b

Num	State	"State"	Head	"Head"
0	h	q 00	L	a 000
1	s	q 01	R	a 001
2	t	q 10	$\#$	a 010
3			a	a 011
4			b	a 100

Assumptions: h is always state 0 .
The start state is state 1.
The symbols always have $L=0, R=1, \#=2.9$

State	Sym	Next state	Head
s	$\#$	s	L
s	a	t	a
s	b	t	L
t	$\#$	h	$\#$
t	a	t	R
t	b	t	b

0	h	$q 00$	L	$a 000$
1	s	q 01	R	a 001
2	t	q 10	$\#$	a 010
3			a	a 011
4			b	a 100

" M " is a string representing a TM M which uses the alphabet $\{(), q, a, 0,1,$, ,
" w " is a string representing w which uses the alphabet $\{a, 0,1\}$.

State	Sym	Next state	Head
s	$\#$	s	L
s	a	t	a
s	b	t	L
t	$\#$	h	$\#$
t	a	t	R
t	b	t	b

0	h	$q 00$	L	$a 000$
1	s	q 01	R	a 001
2	t	q 10	$\#$	a 010
3			a	a 011
4			b	a 100

" ${ }^{\prime}$ "=
(q01, a010, q01, a000), (q01, a011, q10, a011), (q01, a100, q10, a000),
($q 10, a 010, q 00, a 010),(q 10, a 011, q 10, a 001),(q 10, a 100, q 10, a 100)$

"abaa"= a011a100a011a011

"\#ab\#"= a010a011a100a010

Initially:

Tape 1: \# "M" [\#]
Tape 2: \#q00... 01[\#]
Tape 3: \# "Tape contents for M" \#
\#ab[\#] \rightarrow \#a010a011a100[a]010\#

Original TM M:

Head moves left/right: move head on third tape left/right until reaching "a" (or \#).
Blanks to right of input: reformat to "\#"=a0...10.
Hit blank to left of input: original TM hangs.

To do one move:

Search for the current symbol (head on tape 3 is on " a " of its encoding) and the current state (from tape 2) in " M " on tape 1.

When the applicable transition is found:

1. update the current state name on tape 2,
2. move the head on tape 3 (head instruction is $\mathrm{aO} . . .0=\mathrm{L}$ or $\mathrm{a} 00 . .01=\mathrm{R}$) or replace the current symbol encoding on tape 3.

Sample final exam question:

For each of the following languages, indicate the most restrictive of the classes below into which it falls
(a) finite
(b) regular
(c) context-free
(d) Turing-decidable
(e) Turing-acceptable
(f) None of the above.

1. Φ

2. $(a \cup b)^{*}$
3. $\left\{a^{n} b^{n}: n \geq 0\right\}$
4. $\left\{w \in\left\{\#,(,), 0,1, a, q_{1},\right\}^{\star}: w=" M "\right.$ for some $\left.T M M\right\}$
5. $H=\{" M "$ " w " : M halts when run on input $w\}$
6. $\{$ " M " " w " : M does not halt on input $w\}$
