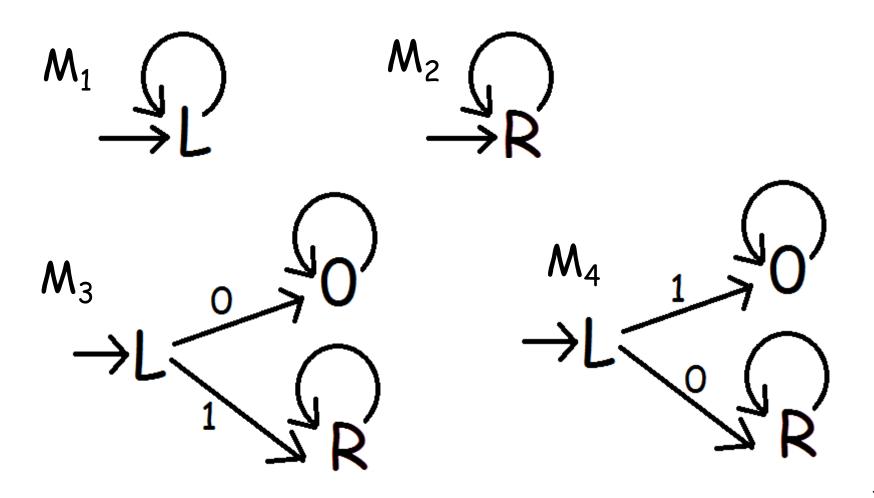
What do these TM's do on input on input 001? Standard input format: (s, #001[#]).



Theorem: Turing decidable languages are closed under difference.

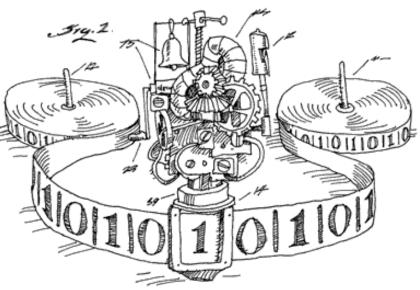
Proof:

Let M_1 be a TM which decides L_1 , and let M_2 be a TM which decides L_2 . Let C be a TM which makes a copy of the input: (s, # w #) |* (h, # w # w [#]). Finish the proof by drawing a machine schema for a TM which decides $L = L_1 - L_2$.

Extensions of TM's/UTM's

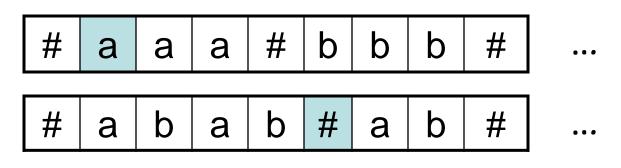
It can be proven that adding extra power to a TM by adding multiple tracks, tapes, or tape heads does not change what it is able to compute. These more powerful models can be simulated on our single tape/one head machine.

Turing Machine by Tom Dunne American Scientist, March-April 2002



Two-way infinite tape:

Multiple tapes:



Multiple tracks:

#	а	b	а	а	b	#	#	#
#	b	а	b	b	а	#	#	#

...

. . .

Two tracks- Each tape square has one symbol on upper track and one symbol on lower track:

#	а	b	b	#	#	#	#	#
#	#	#	#	#	#	#	#	#

To simulate this on a standard TM:

On standard TM initially:

Initial alphabet is s1, s2, ... sk. New symbols= { $\binom{si}{sj}$: i=1, 2, ...k, j=1, 2, ...k} ⁵

Reformat initial tape:

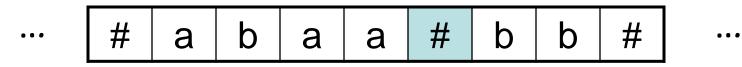
$$\binom{\#}{\#}\binom{a}{\#}\binom{b}{\#}\binom{b}{\#}\binom{\#}{\#}\binom{\#}{\#} \# \# \# \#$$

Each time TM moves onto a # square, reformat it to be: $\binom{*}{*}$

For each state q add a transition:

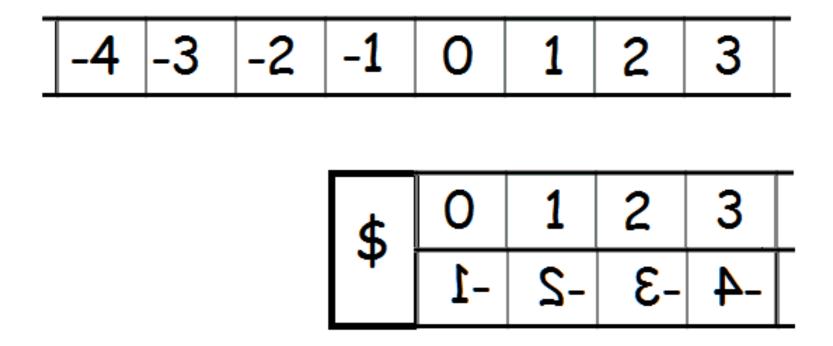
$$\delta(q, \#) \rightarrow (q, {\# \atop \#})$$

Two-way infinite tape:



How can this be simulated with a Turing machine that has 2 tracks?

Conceptually, the infinite tape is "bent" and wrapped around at the as follows, with \$ to mark the bend:

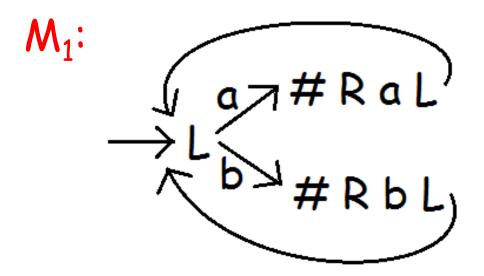


To initialize the tape:



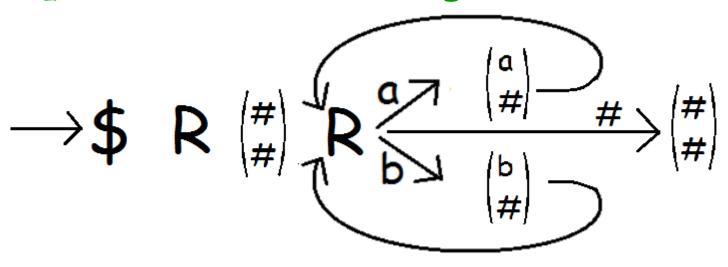
Shift right and convert to two track mode with end of tape marker:

\$	#	Ь	۵	b	#	#	#	#	#
Ψ	#	#	#	#	#	#	#	#	#



w [#] changes to [#] # w

M₂: 2-track formatting.



Old Transitions:

- s # s L s a h #
- s b s R

Add:

- 1. Upper and lower track states and transitions.
- 2. Reformat of # squares to 2-track.
- 3. If we hit \$ change tracks.

Careful: if we are going left on the original tape, this corresponds to left for squares 0, 1, 2, ... but right for squares -1, -2, -3, ... on the 2-track simulation.

Multiple tape heads:

#	а	а	b	b	а	а	#
---	---	---	---	---	---	---	---

Keep track of tape head positions on extra tracks:

#	а	b	b	а	а	#			
0	0	0	0	0	1	0	#	#	#
0	1	0	0	0	0	0			

Multiple tapes:

\$ #	b	b	а	b	b	#			
\$ 0	1	0	0	0	0	0	#	#	#
\$ #	b	b	а	b	b	#	π		
\$ 0	0	0	1	0	0	0			

Universal Turing Machines

A Universal TM (UTM) is like my java TM simulator but written in TM. We can argue that a 3-tape TM can be used to create a UTM which can execute instructions from an arbitrary TM program.

The existence of a UTM is used to acquire some problems which can be proven to not be Turingdecidable.

Alan Turing (1912-1954) ¹⁵

Universal TM's: the birth of the idea of having programmable computers.

Software can be used instead of designing new hardware.

"Universal Turing Machine" Jin Wicked. Problem: A UTM is a Turing machine and hence it must have a fixed finite alphabet.

But it must be able to simulate any TM with an arbitrary alphabet.

How can we do this?

Hint: Our computers which we use to run Java and C programs have an underlying alphabet of 0/1. But they still can represent lots of symbols!

First number the states and symbols:

State	Sym	Next state	Head	Num	State	Head
S	#	S	L	0	h	L
S	а	t	а	1	S	R
S	b	t	L	2	t	#
t	#	h	#	3		а
t	а	t	R	4		b
t	b	t	b			

Num	State	"State"	Head	"Head"
0	h	q00	L	a000
1	S	q01	R	a001
2	t	q10	#	a010
3			а	a011
4			b	a100

Assumptions: h is always state 0.

The start state is state 1.

The symbols always have L= 0, R = 1, # = 2.

State	Sym	Next state	Head	0	h	q00	L	a000
S	#	S	L	1	s	q01	R	a001
S	а	t	а					
S	b	t	L	2	t	q10	#	a010
t	#	h	#					• • • •
t	а	t	R	3			а	a011
t	b	t	b	4			b	a100

"M" is a string representing a TM M which uses the alphabet { (,), q, a, 0, 1, ,}

"w" is a string representing w which uses the alphabet $\{a, 0, 1\}$.

State	Sym	Next state	Head	ſ	0	h	q00	L	a000
S	#	S	L		1	S	q01	R	a001
S	а	t	а	-					
S	b	t	L		2	t	q10	#	a010
t	#	h	#	-					
t	а	t	R		3			а	a011
t	b	t	b		4			b	a100
					•			N	

"M"=

(q01, a010, q01, a000), (q01, a011, q10, a011), (q01, a100, q10, a000), (q10, a010, q00, a010), (q10, a011, q10, a001), (q10, a100, q10, a100)

"abaa"= a011a100a011a011

"#ab#"= a010a011a100a010

Initially:

- Tape 1: # "M" [#]
- Tape 2: #q00... 01[#]
- Tape 3: # "Tape contents for M" #
- $#ab[#] \rightarrow #a010a011a100[a]010#$
- Original TM M:
- Head moves left/right: move head on third tape left/right until reaching "a" (or #).
- Blanks to right of input: reformat to "#"= a0...10.
- Hit blank to left of input: original TM hangs.

To do one move:

Search for the current symbol (head on tape 3 is on "a" of its encoding) and the current state (from tape 2) in "M" on tape 1.

When the applicable transition is found:

1. update the current state name on tape 2,

2. move the head on tape 3 (head instruction is a0...0 = L or a00..01 = R) or replace the current symbol encoding on tape 3.

Sample final exam question:

- For each of the following languages, indicate the most restrictive of the classes below into which it falls
- (a) finite
- (b) regular
- (c) context-free
- (d) Turing-decidable
- (e) Turing-acceptable
- (f) None of the above.
- 1. Ф
- 2. (a ∪ b)*
- 3. $\{a^n b^n : n \ge 0\}$
- 4. $\{w \in \{\#, (,), 0, 1, a, q, \}^* : w = M^* \text{ for some TM } M\}$
- 5. $H = \{ M'' w'' : M \text{ halts when run on input w} \}$
- 6. { "M" "w" : M does not halt on input w}