What do these TM's do on input on input
001? Standard input format: (s, #001[#])).

Theorem: Turing decidable languages are
closed under difference.

Proof:

Let M;be a TM which decides L,, and

et M, be a TM which decides L,.

_et C be a TM which makes a copy of the
input: (s, #w #) |* (h, #w #w [#]).

Finish the proof by drawing a machine
schema for a TM which decides L= L;-L,

Extensions of TM's/UTM's

It can be proven that adding extra power to
a TM by adding multiple tracks, tapes, or
tape heads does not change what it is able
to compute. These more powerful models
can be simulated on our single tape/one
head machine.

Fre Z
[1-

Turing Machine by Tom Dunne

American Scientist, March-April Fl%i@iﬁ E@@é E E 7l

2002 4 §

Two-way infinite tape:

#la|b|lal|a|#

Multiple tapes:

#lala|la|#|b|b|b

#la|lbla|bl[#|a|b

Multiple tracks:

#la|b|lal|la|b|#|#

bla|b|bla|#|#

Two tracks- Each tape square has one symbol
on upper track and one symbol on lower track:

#la|b|b|#|# | # | #|#
H # |\ H#H | # | # #H # #H #

To simulate this on a standard TM:

On standard TM initially:

#la|b|b|# |# | # | # | #

Initial alphabet is si, s2, ... sk.
New symbols= { (5) :i=1,2, .k, j=1,2, .K)

#la|b|b|# | # # | # | #

Reformat initial tape:

CIC)EING) # | # | # | #

Each time TM moves onto a # square,
reformat it to be: (%)

For each state g add a transition:
3(q . #)—@Q. (i))

Two-way infinite tape:

#lalbla|la|# | b|b|#

How can this be simulated with a
Turing machine that has 2 tracks?

Conceptually, the infinite tape is
"bent” and wrapped around at the
as follows, with $ to mark the
bend:

41-3|-2|-1/0]1]2]3

O/ 1 2|3

To initialize the tape:

bla | b |# | #H H H #H

Shift right and convert to two track
mode with end of tape marker:

$#bab###
H # # # # HF

| H

| H

M Hw [#]
ﬁ;; # RDL changes to

%Lb\‘#RbL [H]H#WH

M.: 2-track formatting.

e

—$ R [RE (

>

) 2N

]

H

o

U

Old Transitions:

O-D:I:I:
nh 30

L
#
R

nh i n

Add:

1. Upper and lower track states and
Transitions.

2. Reformat of # squares to 2-track.

3. If we hit $ change tracks.

11

Careful: if we are going left on the
original Tape, this corresponds to
left for squares O, 1, 2, ...

but right for squares -1, -2, -3, ...
on the 2-track simulation.

41-3|-2|-1/0|1]2]3

Ol 1|23

Multiple tape heads:

| a | a| b b a | a |

Keep track of tape head positions
on extra tracks:

Multiple tapes:

14

Universal Turing Machines

A Universal TM (UTM) is like my java TM
simulator but written in TM. We can argue
that a 3-tape TM can be used to create a
UTM which can execute instructions from
an arbitrary TM program.

The existence of a UTM is
used to acquire some
problems which can be
proven to not be Turing- R
decidable. KLY
Alan Turing (1912-1954) 15

Universal TM's:

the birth of the
idea of having
programmable
computers.

Software can be
used instead of
desighing hew
hardware.

"Universal Turing
Machine" Jin Wicked.

16

Problem: A UTM is a Turing machine and
hence it must have a fixed finite alphabetf.

But it must be able to simulate any TM
with an arbitrary alphabet.

How can we do this?

Hint: Our computers which we use to run
Java and C programs have an underlying
alphabet of 0/1. But they still can
represent lots of symbols!

17

First number the states and symbols:

State | Sym sNtZ)t(; Head Num | State | Head
S # S L 0 h L
S a t a 1 S R
S b t L 2 t #
t # h # 3 a
t a t R 4 b
t b t b

18

Num | State | “State” |Head| "Head”
0 h goo0 L a000
1 S o1 R a001
2 t ql0 t a010
3 a a01l
4 b al00

Assumptions: h is always state O.
The start state is state 1.
The symbols always have L= 0,R =1, # = 2¥

Next

State Sym state Head
S # S L
S a t a
S b t L
t # h #

t a t R
t b t b

o[0]0] a000
(o[0X1 a001
gl0 a010
al01l
al00

"M" is a string representing a TM M which
uses the alphabet{ (,),q,a,0,1, }

"w" is a string representing w which uses

the alphabet {aq, O, 1}.

20

Next

State Sym state Head
S # S L
S a t a
S b t L
t # h #
t a t R
t b t b
" M=

o[0]0] a000
(o[0X1 a001
gl0 a010
al01l
al00

(q01, a010, q01, a000), (q01, a011, q10, a011), (q01, a100, q10, a000),
(q10, a010, q00, a010), (q10, a011, q10, a001), (q10, al100, q10, a100)

"abaa"= ad011a100a011a011
"Hab#"= d010a011a100a010

21

Initially:

Tape 1. # "M" [#]

Tape 2: #q00... O1[#]

Tape 3: # "Tape contents for M\" #
Hab[#] — #a010a011a100[a]O10#
Original TM M:

Head moves left/right: move head on third tape
left/right until reaching "a" (or #).

Blanks to right of input: reformat to "#"= a0...10.
Hit blank to left of input: original TM hangs. &

To do ohe move:

Search for the current symbol (head on
tape 3 is on "a"” of its encoding) and the
current state (from tape 2) in "M" on tape 1.

When the applicable transition is found:
1. update the current state name on tape 2,

2. move the head on tape 3 (head instruction
isa0..0 = L or a00..01 = R) or replace the
current symbol encoding on tape 3.

23

Sample final exam question:

For each of the following languages, indicate the most
restrictive of the classes below into which it falls

(a) finite

(b) regular

(c) context-free

(d) Turing-decidable

(e) Turing-acceptable

(f) None of the above.

1. &

2. (aUDb)*

3. {a"b": n> 0}

4. {w e {#,,),0,1,a,4q,.}: w="M" for some TM M}

5. H={"M""w" : M halts when run on input w}

6. { "M" "w" : M does not halt on input w} 2

