
1

Which languages do the following TM’s
accept over the alphabet Σ={a, b}?

Recall: A TM M accepts a language L defined over
an alphabet Σ if M halts on all w in L and either
hangs or computes forever when w is not in L.

2

A COPY TM.

On input w {a, b}*, this TM halts with w
followed by # followed by a copy of w.

That is:

(s, # w [#]) ├ * (h, # w # w [#]).

The program for this TM is available from
the page which gives the TM simulator.

The algorithm changes each a to A and each
b to B in the first copy of w to mark that it
has been copied over already.

3

// Find leftmost symbol of w not copied yet.

middle # goleft L
goleft a goleft L
goleft b goleft L
// Found either #, A, B from part being copied.
goleft A next_s R
goleft B next_s R
goleft # next_s R
// Go to # between w and copy of w
//remembering symbol to copy.
next_s a next_s A
next_s b next_s B
next_s A RtoM_a R
next_s B RtoM_b R

next_s # clean L // Done- clean up.

start state: middle

4

// Go right to the middle

RtoM_a a RtoM_a R
RtoM_a b RtoM_a R
RtoM_a # RtoR_a R

// Go right to the right hand end
RtoR_a a RtoR_a R
RtoR_a b RtoR_a R
RtoR_a # left1 a

// Go left to blank in middle.
left1 a left1 L
left1 b left1 L
left1 # middle #

RtoM_b a RtoM_b R
RtoM_b b RtoM_b R
RtoM_b # RtoR_b R

RtoR_b a RtoR_b R
RtoR_b b RtoR_b R
RtoR_b # left1 b

5

// Clean up the tape-

//change A back to a and B back to b.
clean A clean a
clean B clean b
clean a clean L
clean b clean L
clean # right1 R

// Position head to right of copy of w.
right1 a right1 R
right1 b right1 R
right1 # right2 R
right2 a right2 R
right2 b right2 R
right2 # h #

6

A TM M= (K, Σ, δ, s) decides a language L

defined over an alphabet Σ1 ⊆ Σ (# ∉ Σ1)

if for all strings w Σ1*,

(s, # w [#]) ├ * (h, # Y [#]) for w L and

(s, # w [#]) ├ * (h, # N [#]) for w ∉ L.

7

Theorem: Turing decidable languages are
closed under union.

Proof:

Let M1 be a TM which decides L1, and

let M2 be a TM which decides L2.

Let C be a TM which makes a copy of the

input: (s, # w #) ├* (h, # w # w [#]).

We can easily draw a machine schema for a
TM which decides L= L1 ⋃ L2.

8

Pseudo code for algorithm:

1. Run the copy machine C.

2. Run M1 on the right hand copy of w.

3. If the answer is Y (yes) clean up the tape
by erasing the first copy of w and answer
Y.

4. If the answer is N, erase the N and run
M2 on the original copy of w halting with
the answer it provides.

9

Why does this work?

If the TM M1 does not hang on any inputs:

Then the new machine created does not
use the portion of the tape where the
original copy of w is stored when running
M1:

10

Theorem: Turing decidable languages are
closed under intersection.

Proof:

Let M1 be a TM which decides L1, and

let M2 be a TM which decides L2.

Let C be a TM which makes a copy of the

input: (s, # w #) ├* (h, # w # w [#]).

Finish the proof by drawing a machine
schema for a TM which decides L= L1 L2.

11

Theorem: Turing decidable languages are
closed under complement.

Proof:

Let M be a TM which decides L.

It is easy to construct the machine schema
for a TM which decides the complement of
L.

Algorithm: Run M. Change Y to N and N to Y
at end then position head appropriately.

12

Theorem: All Turing-decidable languages
are Turing-acceptable.

Recall:

Decide means to halt with (h, #Y[#]) when w is in
L and (h, #N[#]) when w is not in L.

Accept means that the TM halts on w when w is in
L and hangs (head falls off left hand end of tape
or there is an undefined transition) or computes
forever when w is not in L.

Proof: Given a TM M1 that decides L we can
easily design a machine M2 which accepts L.

13

Theorem: Turing-decidable languages are
closed under Kleene star.

Example: w= abcd

Which factorizations of w must be
considered?

14

w1 w2 w3 w4

a b c d

a b cd

a bc d

a bcd

ab c d

ab cd Kleene

abc d Star

abcd Cases

15

public static void testW(int level, String w)
{

int i, j, len; String u, v;

len= w.length(); if (len == 0) return;

for (i=1; i <= len; i++)
{

u= w.substring(0,i);
for (j=0; j < level-1; j++)

System.out.print(" ");
System.out.println(

"W" + level + " = " + u);
v= w.substring(i, len);
testW(level+1, v);

}
}

16

W1 = a
W2 = b

W3 = c
W4 = d

W3 = cd
W2 = bc

W3 = d
W2 = bcd

W1 = ab
W2 = c

W3 = d
W2 = cd

W1 = abc
W2 = d

W1 = abcd

Output

17

Thought question: what would you do to
determine if a string w is in L1 ۰ L2 if you
have TM’s which decide L1 and L2?

High level pseudo code is fine. It would not
be fun to program this on a TM.

18

Operation Turing-decidable Turing-acceptable

Union yes yes

Concatenation yes yes

Kleene star yes yes

Complement yes no *

Intersection yes yes

Summary: Closure

* - need proof (coming soon)

