Which languages do the following TM's accept over the alphabet $\Sigma=\{a, b\}$?

(b) $\stackrel{a, b, \#}{\rightarrow-}$
(c) $\rightarrow \boldsymbol{R}^{\#}$

Recall: A TM M accepts a language L defined over an alphabet Σ if M halts on all w in L and either hangs or computes forever when w is not in L.

A COPY TM.

On input $w \in\{a, b\}^{*}$, this TM halts with w followed by \# followed by a copy of w.

That is:
(s, \# w [\#]) $⺊^{*}$ (h, \# w \# w [\#]).
The program for this TM is available from the page which gives the TM simulator.

The algorithm changes each a to A and each b to B in the first copy of w to mark that it has been copied over already.
// Find leftmost symbol of w not copied yet. middle \# goleft L start state: middle $\begin{array}{llll}\text { goleft } & \text { a goleft } & L \\ \text { goleft } & b & \text { goleft } & L\end{array}$
// Found either \#, A, B from part being copied. goleft A next_s R goleft B next_s R goleft \# next_s R
// Go to \# between w and copy of w
//remembering symbol to copy.

next_s	a	next_s	A
next_s	b	next_s	B
next_s	A	$R t o M _a$	R
next_s	B	$R t o M _b$	R

next_s \# clean L // Done- clean up.
// Go right to the middle
RtoM_a a RtoM_a R RtoM_a b RtoM_a R RtoM_a \# RtoR_a R

RtoM_b a RtoM_b R RtoM_b b RtoM_b R RtoM_b \# RtoR_b R
// Go right to the right hand end

RtoR_a	a	$R+o R _a$	R	$R t o R _b$	a	$R+o R _b$	R
$R+o R _a$	b	$R t o R _a$	R	$R t o R _b$	b	$R+o R _b$	R
$R t o R _a$	$\#$	left1	a	$R t o R _b$	$\#$	left1	b

// Go left to blank in middle.
left1 a left1 L
left1 b left1 L
left1 \# middle \#
// Clean up the tape-
//change A back to a and B back to b.
clean A clean a
clean B clean b
clean a clean L
clean b clean L
clean \# right1 R
// Position head to right of copy of w.
right1 a right1 R
right1 b right1 R
right1 \# right2 R
right2 a right2 R
right2 b right2 R
right2 \# h \#

A TM $M=(K, \Sigma, \delta, s)$ decides a language L defined over an alphabet $\Sigma_{1} \subseteq \Sigma\left(\# \notin \Sigma_{1}\right)$ if for all strings $w \in \Sigma_{1}{ }^{*}$,
$\left.(s, \# w[\#])\right|^{*}(h, \# Y[\#])$ for $w \in L$ and
$\left.(s, \# w[\#])\right|^{*}(h, \# N[\#])$ for $w \notin L$.

Theorem: Turing decidable languages are closed under union.

Proof:
Let M_{1} be a TM which decides L_{1}, and let M_{2} be a $T M$ which decides L_{2}.
Let C be a TM which makes a copy of the input: (s, \# w \#) ト* (h, \# w \# w [\#]).
We can easily draw a machine schema for a TM which decides $L=L_{1} \cup L_{2}$.

Pseudo code for algorithm:

1. Run the copy machine C.
2. Run M_{1} on the right hand copy of w.
3. If the answer is Y (yes) clean up the tape by erasing the first copy of w and answer Y.
4. If the answer is N, erase the N and run M_{2} on the original copy of w halting with the answer it provides.

Why does this work?

If the TM M_{1} does not hang on any inputs:

Then the new machine created does not use the portion of the tape where the original copy of w is stored when running M_{1} :

Theorem: Turing decidable languages are closed under intersection.

Proof:
Let M_{1} be a TM which decides L_{1}, and let M_{2} be a $T M$ which decides L_{2}.

Let C be a TM which makes a copy of the
input: (s, \# w \#) ト* (h, \# w \# w [\#]).
Finish the proof by drawing a machine schema for a $T M$ which decides $L=L_{1} \cap L_{2}$.

Theorem: Turing decidable languages are closed under complement.
Proof:
Let M be a $T M$ which decides L.
It is easy to construct the machine schema for a TM which decides the complement of L.

Algorithm: Run M. Change Y to N and N to Y at end then position head appropriately.

Theorem: All Turing-decidable languages are Turing-acceptable.
Recall:
Decide means to halt with ($\mathrm{h}, \# \mathrm{Y}[\#]$) when w is in L and ($h, \# N[\#]$) when w is not in L.
Accept means that the TM halts on w when w is in L and hangs (head falls off left hand end of tape or there is an undefined transition) or computes forever when w is not in L .

Proof: Given a TM M_{1} that decides L we can easily design a machine M_{2} which accepts L.

Theorem: Turing-decidable languages are closed under Kleene star.

Example: $w=a b c d$

Which factorizations of w must be considered?

w_{1}	w_{2}	w_{3}	w_{4}
a	b	c	d
a	b	cd	
a	bc	d	
a	bcd		
ab	c	d	
ab	cd		Kleene
abc	d		Star
abcd			Cases

public static void testw(int level, String w) \{
int i, j, len; String u, v;
1en= w.length(); if (1en == 0) return;
for (i=1; i <= 1en; i++)
\{
$u=w . \operatorname{substring}(0, i)$;
for ($j=0$; $j<1 e v e 1-1$; j++) system.out.print("
System.out.println(
"w" + leve1 + " = " + u);
v= w.substring(i, len); testw(leve1+1, v);
\}
$\mathrm{w} 1=\mathrm{a}$

$$
w 1=a b
$$

$$
\mathrm{w} 1=\mathrm{abc}
$$

$\mathrm{w} 1=\mathrm{abcd}$

$$
\begin{aligned}
& W 2=b \\
& \mathrm{~W} 3=\mathrm{C} \\
& \mathrm{w} 4=\mathrm{d} \\
& w 3=c d \\
& w 2=b c \\
& \mathrm{~W} 3=\mathrm{d} \\
& \text { wm = bcd } \\
& W 2=c \\
& \mathrm{w} 3=\mathrm{d} \\
& w 2=c d \\
& W 2=d
\end{aligned}
$$

Thought question: what would you do to determine if a string w is in $L_{1} \cdot L_{2}$ if you have TM's which decide L_{1} and L_{2} ?

High level pseudo code is fine. I \dagger would no \dagger be fun to program this on a TM.

Summary: Closure

Operation	Turing-decidable	Turing-acceptable
Union	yes	yes
Concatenation	yes	yes
Kleene star	yes	yes
Complement	yes	no *
Intersection	yes	yes

> * - need proof (coming soon)

