Which languages do the following TM's accept over the alphabet $\Sigma = \{a, b\}$?

Recall: A TM M accepts a language L defined over an alphabet Σ if M halts on all w in L and either hangs or computes forever when w is not in L. 1

A COPY TM.

On input $w \in \{a, b\}^*$, this TM halts with w followed by # followed by a copy of w.

That is:

The program for this TM is available from the page which gives the TM simulator.

The algorithm changes each a to A and each b to B in the first copy of w to mark that it has been copied over already.

// Find leftmost symbol of w not copied yet.

middle # goleft L start state: middle goleft a goleft L goleft b goleft L // Found either #, A, B from part being copied. goleft A next_s R goleft B next_s R goleft # next_s R // Go to # between w and copy of w //remembering symbol to copy. next_s a next_s A next_s b next_s B next_s A RtoM a R next_s B RtoM_b R clean L // Done- clean up. next s #

// Go right to the middle

RtoM_a	۵	RtoM_a	R	RtoM_b a RtoM_b R
RtoM_a	b	RtoM_a	R	RtoM_b b RtoM_b R
RtoM_a	#	RtoR_a	R	RtoM_b # RtoR_b R

// Go right to the right hand end
RtoR_a a RtoR_a R RtoR_b a RtoR_b R
RtoR_a b RtoR_a R RtoR_b b RtoR_b R
RtoR_a # left1 a RtoR_b # left1 b

// Go left to blank in middle.
left1 a left1 L
left1 b left1 L
left1 # middle #

// Clean up the tape-

//change A back to a and B back to b.

clean	A	clean	۵
clean	В	clean	b
clean	a	clean	L
clean	b	clean	L
clean	#	right1	R

// Position head to right of copy of w.

right1	۵	right1	R
right1	b	right1	R
right1	#	right2	R
right2	a	right2	R
right2	b	right2	R
right2	#	h	#

A TM M= (K, Σ , δ , s) decides a language L defined over an alphabet $\Sigma_1 \subseteq \Sigma$ ($\# \notin \Sigma_1$) if for all strings $w \in \Sigma_1^*$,

Theorem: Turing decidable languages are closed under union.

Proof:

Let M_1 be a TM which decides L_1 , and let M_2 be a TM which decides L_2 . Let C be a TM which makes a copy of the input: (s, # w #) |* (h, # w # w [#]). We can easily draw a machine schema for a TM which decides $L = L_1 \cup L_2$.

Pseudo code for algorithm:

- 1. Run the copy machine C.
- 2. Run M_1 on the right hand copy of w.
- 3. If the answer is Y (yes) clean up the tape by erasing the first copy of w and answer Y.
- 4. If the answer is N, erase the N and run M_2 on the original copy of w halting with the answer it provides.

Why does this work?

If the TM M_1 does not hang on any inputs:

Then the new machine created does not use the portion of the tape where the original copy of w is stored when running M_1 :

Theorem: Turing decidable languages are closed under intersection.

Proof:

Let M_1 be a TM which decides L_1 , and let M_2 be a TM which decides L_2 . Let C be a TM which makes a copy of the input: (s, # w #) |* (h, # w # w [#]). Finish the proof by drawing a machine schema for a TM which decides L= $L_1 \cap L_2$ Theorem: Turing decidable languages are closed under complement.

Proof:

Let M be a TM which decides L.

It is easy to construct the machine schema for a TM which decides the complement of L.

Algorithm: Run M. Change Y to N and N to Y at end then position head appropriately.

Theorem: All Turing-decidable languages are Turing-acceptable.

Recall:

Decide means to halt with (h, #Y[#]) when w is in L and (h, #N[#]) when w is not in L.

Accept means that the TM halts on w when w is in L and hangs (head falls off left hand end of tape or there is an undefined transition) or computes forever when w is not in L.

Proof: Given a TM M_1 that decides L we can easily design a machine M_2 which accepts L.

Theorem: Turing-decidable languages are closed under Kleene star.

Example: w= abcd

Which factorizations of w must be considered?

w ₁	w ₂	W ₃	w ₄
а	b	С	d
а	b	cd	
а	bc	d	
а	bcd		
ab	С	d	
ab	cd		Kleene
abc	d		Star
abcd			Cases

public static void testW(int level, String w)
{

```
int i, j, len; String u, v;
```

}

```
len= w.length( ); if (len == 0) return;
for (i=1; i <= len; i++)
    u = w.substring(0,i);
    for (j=0; j < level-1; j++)
         System.out.print("
                                       ");
    System.out.println(
        "W" + level + " = " + u);
    v= w.substring(i, len);
    testW(level+1, v);
```

W1 = a

W2 = bW3 = CW4 = dW3 = cdW2 = bcW3 = dW2 = bcdW1 = ab $W^2 = C$ W3 = d $W^2 = cd$ W1 = abcOutput $W^2 = d$ W1 = abcd

Thought question: what would you do to determine if a string w is in $L_1 \cdot L_2$ if you have TM's which decide L_1 and L_2 ?

High level pseudo code is fine. It would not be fun to program this on a TM.

Summary: Closure

Operation	Turing-decidable	Turing-acceptable
Union	yes	yes
Concatenation	yes	yes
Kleene star	yes	yes
Complement	yes	no *
Intersection	yes	yes

* - need proof (coming soon)