1. Design a TM which on a input $w \in \{0, 1\}^*$, shifts w over one position to the right. That is: $(s, \# w [\#]) \vdash (h, \# \# w [\#])$. 2. Show the computation of your TM on the input 010:

- (s, #010[#]) | ...
- 3. Show what your TM does on input ϵ :

(s, # [#]) ├ ...

There is a tutorial today.

The assignment has been revised (without changing the meanings of the questions) to clarify what is required:

4(a). L= { w in {a, b, c}* : w either has the same number of a's and b's or w has twice as many c's as a's (or satisfies both)}

10. { $a^r b^n a^{n-r}$: $n \ge r$ (before it was $n \ge 0$)}

L= { u u^R where u \in {a, b}* }

We designed a TM which accepts this language (that is, it halts if the input is in L and hangs or computes forever when it is not).

A TM M decides a language L if

What algorithm could you use to decide L?

An artist's rendition of a steam-powered Turing machine. There is a mural of this between the second and third floors in Sieg Hall at UW Seattle.

Machine Schema

We introduce machine schema- a powerful notation for drawing a picture of a TM.

This is a very concise way to represent a TM.

Using machine schema facilitates a procedural approach to TM design.

Basic Building blocks:

Machine L: Move head one square left and halt. Machine R: Move head one square right and halt.

Machine σ : Writes σ and halt.

- \rightarrow take on $\sigma \rightarrow$ take on any symbol Halt if no arc exits with current symbol. Technical note:
- $M_1 M_2$ (juxtaposition of two TM names) means the same thing as:
- $M_1 \rightarrow M_2$ (take transition on any symbol)

Example 1:

Machine schema for a

TM which on a input $w \in \{0, 1\}^*$,

shifts w over one position to the right.

That is: (s, # w [#]) |* (h, # # w [#]).

Example 2:

L= { $w \in \{a, b\}^* : w \text{ has an even number of a's}$ A TM M decides a language L if (s, # w [#]) $\models * (h, # Y [#]) \text{ for } w \in L \text{ and}$ (s, # w [#]) $\models * (h, # N [#]) \text{ for } w \notin L.$

To decide L:

Move left erasing symbols as we go and keeping track of the number of a's modulo 2 until reaching the blank at the end and then write the answer on the tape. 8

TM which decides

L= { $w \in \{a, b\}^*$: w has an even number of a's}

9

Ex. 3: A COPY TM.

On input $w \in \{a, b\}^*$, this TM halts with w followed by # followed by a copy of w.

That is:

The program for this TM is available from the page which gives the TM simulator.

The algorithm changes each a to A and each b to B in the first copy of w to mark that it has been copied over already. 10

// Find leftmost symbol of w not copied yet.

middle # goleft L start state: middle goleft a goleft L goleft b goleft L // Found either #, A, B from part being copied. goleft A next_s R goleft B next_s R goleft # next_s R // Go to # between w and copy of w //remembering symbol to copy. nexts a nexts A next_s b next_s B next_s A RtoM a R next_s B RtoM_b R clean L // Done- clean up. next s #

// Go right to the middle

RtoM_a	۵	RtoM_a	R	RtoM_b a RtoM_b R
RtoM_a	b	RtoM_a	R	RtoM_b b RtoM_b R
RtoM_a	#	RtoR_a	R	RtoM_b # RtoR_b R

// Go right to the right hand end
RtoR_a a RtoR_a R RtoR_b a RtoR_b R
RtoR_a b RtoR_a R RtoR_b b RtoR_b R
RtoR_a # left1 a RtoR_b # left1 b

// Go left to blank in middle.
left1 a left1 L
left1 b left1 L
left1 # middle #

// Clean up the tape-

//change A back to a and B back to b.

clean	A	clean	۵
clean	В	clean	b
clean	a	clean	L
clean	b	clean	L
clean	#	right1	R

// Position head to right of copy of w.

right1	۵	right1	R
right1	b	right1	R
right1	#	right2	R
right2	a	right2	R
right2	b	right2	R
right2	#	h	#