1. Design a TM which on a input w € {0, 1}*,
shifts w over one position to the right.
That is: (s, #w [#]) }* (h, # # w [#]).

2. Show the computation of your TM on
the input 010:

(s, #010[#)]) | ..
3. Show what your TM does on input &:

(s, #[#]) } ..

There is a tutorial today.

The assignment has been revised (without
changing the meanings of the questions) to
clarify what is required:

4(a). L={win {a, b, c}* : w either has the
same number of a's and b's or w has twice as
many c's as a's (or satisfies both)}

10. {a" b"a"" n > r (before it was n > 0)}

L= { uuR where u € {a, b}*}

We designed a TM which accepts this language
(that is, it halts if the input is in L and hangs or
computes forever when it is not).

A TM M decides a language L if

(s, #w[#])
(s, #w [#])

-*(h, #Y [#]) forw € L and
-*(h, # N [#]) forw € L.

What algorithm could you use to decide L?

An artist’s rendition of a steam-powered Turing
machine. There is a mural of this between the second
and third floors in Sieg Hall at UW Seattle.

g\
‘4'.‘
] A
o'.

{ T

.

r‘ .

B’

fm /xmun

i
."
I

v

N

Machine Schema

We introduce machine schema- a powerful
notation for drawing a picture of a TM.

This is a very concise way to represent a
™.

Using machine schema facilitates a
procedural approach to TM design.

Basic Building blocks:

Machine L: Move head one square left and halt.
Machine R: Move head one square right and halt.

Machine o: Writes o and halt.

Oy takeono —> take on any symbol
Halt if no arc exits with current symbol.

Technical note:

M; M, (juxtaposition of Two TM names)

means the same thing as:

M;— M, (take fransition on any symbol) :

Example 1:

Machine schema for a

TM which on a input w € {0, 1}*,

shifts w over one position to the right.
That is: (s, #w [#]) }* (h, # # w [#]).

Example 2:

L={w e {a, b}* : w has an even number of a's}
A TM M decides a language L if

(s, #w[#]) +*(h, #Y [#]) forw e L and

(s, #w[#]) F*(h, # N [#]) forw ¢ L.

To decide L:

Move left erasing symbols as we go and keeping

track of the number of a's modulo 2 until reaching
the blank at the end and then write the answer on
the tape. 8

TM which decides

L={w e {a, b}* : w has an even number of a's}

odd#as

§< qRNR
- [,

p>
\jR YR

even # a's

Ex. 3: A COPY TM.

On input w € {a, b}*, this TM halts with w
followed by # followed by a copy of w.

That is:
(s, #w[#]) |*(h #w#Hw[#]).

The program for this TM is available from
the page which gives the TM simulator.

The algorithm changes each a to A and each
b to B in the first copy of w to mark that it
has been copied over already.

10

// Find leftmost symbol of w not copied yet.

middle # goleft L start state: middle
goleft a goleft L

goleft b goleft
// Found either #, A, B from part being copied.
goleft A next_s R

goleft B next_s R

goleft # next_s R

// Go to # between w and copy of w
//remembering symbol to copy.

hext s a hext s A

hext s b hext s B

hext_ s A RtoM_a R

next_s B RtoM_b R

next_s # clean L // Done- clean up. .

// Go right to the middle

RtoM_a a RtoM_a R RtoM_b a RtoM_ b R
RtoM_a b RtoM_a R RtoM_b b RtoM_b R
RtoM_a # RtoR _a R RtoM_ b # RtoR_ b R
// Go right to the right hand end

RtoR_ a a RtoR_a R RtoR_ b a RtoR_ b R
RtoR_a b RtoR_a R RtoR_ b b RtoR_ b R
RtoR_a # leftl a RtoR_ b # leftl b

// Go left to blank in middle.
eftlaleftlL

eftlb leftl L

eftl # middle #

12

// Clean up the tape-

//change A back to a and B back to b.
clean A clean a
ean B «clean b
ean a clean L

ean b clean L
ean # rightl R

O O O O

// Position head to right of copy of w.
rightl a rightl R
rightl b rightl R
rightl # right2 R
right2 a right2 R
right2 b right2 R
right2 # h #

13

