
1

1. Design a TM which on a input w  {0, 1}*,

shifts w over one position to the right.

That is: (s, # w [#]) ├* (h, # # w [#]).

2. Show the computation of your TM on
the input 010:

(s, # 0 1 0 [#]) ├ …

3. Show what your TM does on input ε:

(s, # [#]) ├ …

2

There is a tutorial today.

The assignment has been revised (without
changing the meanings of the questions) to
clarify what is required:

4(a). L= { w in {a, b, c}* : w either has the

same number of a's and b's or w has twice as

many c's as a's (or satisfies both)}

10. {ar bn a n-r: n ≥ r (before it was n ≥ 0)}

3

L= { u uR where u  {a, b}* }

We designed a TM which accepts this language
(that is, it halts if the input is in L and hangs or
computes forever when it is not).

A TM M decides a language L if

(s, # w [#]) ├ * (h, # Y [#]) for w  L and

(s, # w [#]) ├ * (h, # N [#]) for w ∉ L.

What algorithm could you use to decide L?

4

An artist's rendition of a steam-powered Turing
machine. There is a mural of this between the second
and third floors in Sieg Hall at UW Seattle.

5

Machine Schema

We introduce machine schema- a powerful
notation for drawing a picture of a TM.

This is a very concise way to represent a
TM.

Using machine schema facilitates a
procedural approach to TM design.

6

Basic Building blocks:

Machine L: Move head one square left and halt.

Machine R: Move head one square right and halt.

Machine σ: Writes σ and halt.

take on any symboltake on σ

Halt if no arc exits with current symbol.

Technical note:

M1 M2 (juxtaposition of two TM names)

means the same thing as:

M1 → M2 (take transition on any symbol)

7

Example 1:

Machine schema for a

TM which on a input w  {0, 1}*,

shifts w over one position to the right.

That is: (s, # w [#]) ├* (h, # # w [#]).

8

Example 2:

L= { w  {a, b}* : w has an even number of a’s}

A TM M decides a language L if

(s, # w [#]) ├ * (h, # Y [#]) for w  L and

(s, # w [#]) ├ * (h, # N [#]) for w ∉ L.

To decide L:

Move left erasing symbols as we go and keeping
track of the number of a’s modulo 2 until reaching
the blank at the end and then write the answer on
the tape.

9

TM which decides

L= { w  {a, b}* : w has an even number of a’s}

odd # a’s

even # a’s

10

Ex. 3: A COPY TM.

On input w  {a, b}*, this TM halts with w
followed by # followed by a copy of w.

That is:

(s, # w [#]) ├ * (h, # w # w [#]).

The program for this TM is available from
the page which gives the TM simulator.

The algorithm changes each a to A and each
b to B in the first copy of w to mark that it
has been copied over already.

11

// Find leftmost symbol of w not copied yet.

middle # goleft L
goleft a goleft L
goleft b goleft L
// Found either #, A, B from part being copied.
goleft A next_s R
goleft B next_s R
goleft # next_s R
// Go to # between w and copy of w
//remembering symbol to copy.
next_s a next_s A
next_s b next_s B
next_s A RtoM_a R
next_s B RtoM_b R

next_s # clean L // Done- clean up.

start state: middle

12

// Go right to the middle

RtoM_a a RtoM_a R
RtoM_a b RtoM_a R
RtoM_a # RtoR_a R

// Go right to the right hand end
RtoR_a a RtoR_a R
RtoR_a b RtoR_a R
RtoR_a # left1 a

// Go left to blank in middle.
left1 a left1 L
left1 b left1 L
left1 # middle #

RtoM_b a RtoM_b R
RtoM_b b RtoM_b R
RtoM_b # RtoR_b R

RtoR_b a RtoR_b R
RtoR_b b RtoR_b R
RtoR_b # left1 b

13

// Clean up the tape-

//change A back to a and B back to b.
clean A clean a
clean B clean b
clean a clean L
clean b clean L
clean # right1 R

// Position head to right of copy of w.
right1 a right1 R
right1 b right1 R
right1 # right2 R
right2 a right2 R
right2 b right2 R
right2 # h #

