1. Design a TM which on a input $w \in\{0,1\}^{*}$, shifts w over one position to the right. That is: (s, \# w [\#]) F* $^{*}(h, \# \# w[\#])$.
2. Show the computation of your TM on the input 010:

$$
(s, \# 010 \text { [\#]) } \mid \ldots
$$

3. Show what your TM does on input ε :

$$
(s, \#[\#]) \mid
$$

There is a tutorial today.
The assignment has been revised (without changing the meanings of the questions) to clarify what is required:

4(a). $\mathrm{L}=\left\{\mathrm{w}\right.$ in $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*}: \mathrm{w}$ either has the same number of a's and b's or w has twice as many c's as a's (or satisfies both) \}
10. $\left\{a^{r} b^{n} a^{\mathrm{n}-\mathrm{r}}: \mathrm{n} \geq \mathrm{r}(\right.$ before it was $\left.\mathrm{n} \geq 0)\right\}$
$L=\left\{u u^{R}\right.$ where $\left.u \in\{a, b\}^{*}\right\}$
We designed a TM which accepts this language (that is, it halts if the input is in L and hangs or computes forever when it is not).

A TM M decides a language L if
($s, \# w[\#]$) $\left.\right|^{*}(h, \# Y[\#])$ for $w \in L$ and
(s, \#w [\#]) $\left.\right|^{*}(h, \# N[\#])$ for $w \notin L$.
What algorithm could you use to decide L?

An artist's rendition of a steam-powered Turing machine. There is a mural of this between the second and third floors in Sieg Hall at UW Seattle.

Machine Schema

We introduce machine schema- a powerful notation for drawing a picture of a TM.

This is a very concise way to represent a TM.

Using machine schema facilitates a procedural approach to TM design.

Basic Building blocks:

Machine L: Move head one square left and halt. Machine R: Move head one square right and halt. Machine σ : Writes σ and halt.
$\xrightarrow{\sigma}$ take on $\sigma \quad \longrightarrow$ take on any symbol
Halt if no arc exits with current symbol.
Technical note:
$M_{1} M_{2}$ (juxtaposition of two TM names) means the same thing as:
$M_{1} \rightarrow M_{2}$ (take transition on any symbol)

Example 1:

Machine schema for a
TM which on a input $w \in\{0,1\}^{*}$,
shifts w over one position to the right.
That is: (s, \# w [\#]) $\left.\right|^{*}(h, \# \# w[\#])$.

Example 2:
$L=\left\{w \in\{a, b\}^{*}: w\right.$ has an even number of $\left.a^{\prime} s\right\}$
A TM M decides a language L if
(s, \# w [\#]) $\left.\right|^{*}(h, \# Y[\#])$ for $w \in L$ and
(s, \# w [\#]) $⺊^{*}(h, \# N[\#])$ for $w \notin L$.

To decide L:
Move left erasing symbols as we go and keeping track of the number of a's modulo 2 until reaching the blank at the end and then write the answer on the tape.

TM which decides
$L=\left\{w \in\{a, b\}^{*}: w\right.$ has an even number of $\left.a ' s\right\}$

odd \# a's

Ex. 3: A COPY TM.
On input $w \in\{a, b\}^{*}$, this TM halts with w followed by \# followed by a copy of w.
That is:
(s, \# w [\#]) ト* (h, \# w \# w [\#]).
The program for this TM is available from the page which gives the TM simulator.
The algorithm changes each a to A and each b to B in the first copy of w to mark that it has been copied over already.
// Find leftmost symbol of w not copied yet. middle \# goleft L start state: middle $\begin{array}{llll}\text { goleft } & \text { a goleft } & L \\ \text { goleft } & b & \text { goleft } & L\end{array}$
// Found either \#, A, B from part being copied. goleft A next_s R goleft B next_s R goleft \# next_s R
// Go to \# between w and copy of w
//remembering symbol to copy.

next_s	a	next_s	A
next_s	b	next_s	B
next_s	A	$R t o M _a$	R
next_s	B	$R t o M _b$	R

next_s \# clean L // Done-clean up.
// Go right to the middle
RtoM_a a RtoM_a R RtoM_a b RtoM_a R RtoM_a \# RtoR_a R

RtoM_b a RtoM_b R
RtoM_b b RtoM_b R
RtoM_b \# RtoR_b R
// Go right to the right hand end

RtoR_a	a	$R+o R _a$	R	$R t o R _b$	a	$R+o R _b$	R
$R+o R _a$	b	$R t o R _a$	R	$R t o R _b$	b	$R+o R _b$	R
$R t o R _a$	$\#$	left1	a	$R t o R _b$	$\#$	left1	b

// Go left to blank in middle.
left1 a left1 L
left1 b left1 L
left1 \# middle \#
// Clean up the tape-
//change A back to a and B back to b.
clean A clean a
clean B clean b
clean a clean L
clean b clean L
clean \# right1 R
// Position head to right of copy of w.
right1 a right1 R
right1 b right1 R
right1 \# right2 R
right2 a right2 R
right2 b right2 R
right2 \# h \#

