
1

Design a TM that when started with input
w ∈ {a,b}*, it erases the tape and then writes 42
on it. For example:

The number 42 has received considerable attention in
popular culture as a result of its central appearance in The
Hitchhiker's Guide to the Galaxy as the "Answer to The
Ultimate Question of Life, the Universe, and Everything".
(from wikipedia)

should halt with this:

2

Announcements:

My TM definitions are slightly different
from the book- use my definitions on
assignments and with the TM simulator.

Assignment #4: Due at the beginning of
class, Fri. July 14. Recall that you need a
passing average on your top 4 assignments
to pass the class.

There is a tutorial on Tuesday July 11.
Bring any questions you have about the
assignment.

3

Turing Machines- Definition

This lecture formally defines the Turing
machine and gives more examples of how
they work.

With them, we will be able to prove
statements regarding the limitations of
modern day computers.

4

L= { w  {a, b}* : w has an even number of a’s}

A TM M decides a language L if

(s, # w [#]) ├ * (h, # Y [#]) for w  L and

(s, # w [#]) ├ * (h, # N [#]) for w ∉ L.

To decide L:

Move left erasing symbols as we go and keeping
track of the number of a’s modulo 2 until reaching
the blank at the end and then write the answer on
the tape.

5

State Symbol Next state Head Instr.

start # evena L

evena a rem_o #

evena b rem_e #

odda a rem_e #

odda b rem_o #

rem_e # evena L

rem_o # odda L

evena # writey R

odda # writen R

writey # writey Y

writen # writen N

writey Y h R

writen N h R

6

A Turing Machine M consists of a
quadruple (K, Σ, δ, s) where

K is a finite set of states, Σ is an alphabet,

δ, the transition function is a function
from K x Σ to (K ⋃ h) x (Σ⋃ {L, R}) and

s  K is the start state.

Technical notes: in practice we allow
leaving part of the function undefined and
just say the TM hangs when an undefined
transition is encountered. Also, # is
always in Σ and h (the halt state) ∉ K.

7

Example TM M= (K, Σ, δ, s)

where

K= {start, evena, odda, rem_e, rem_o,
writey, writen},

Σ= { #, a, b, Y, N},

δ was given previously (but not all
transitions were defined), and s= start.

Side note: these definitions differ slightly
from second edition of text for ease in
programming.

8

The format of the input to the TM
simulator is as follows:

<Name of start state>
<current state> <current symbol> <next state> <head instruction>
...
<current state> <current symbol> <next state> <head instruction>

$
<input string w1>
<input string w2>

...

9

Rules for TM Descriptions

1. The state name h is used to denote the halting state.

2. Use the symbol # to represent a blank.

3. If a line starts with // it is a comment. Comments can
also be added on the same line as an instruction at
the end of the line (start with //).

4. Each of the state names is an arbitrary string. The
current symbol and new symbol each must be a single
symbol.

6. The head instruction is either L (move the head one
square left) or R (move the head one square right) or
a symbol to replace the current tape square contents.

7. The $ indicates the end of the TM description.

10

start
start # evena L
// Erase current symbol using state to
// remember even/odd
evena a rem_o #
evena b rem_e #
odda a rem_e #
odda b rem_o #
// Move left off square just blanked out
// to correct state
rem_o # odda L
rem_e # evena L

Input to TM
Simulator

11

// Found # at LH end of tape
evena # writey R
odda # writen R
// Write the answer
writey # writey Y
writen # writen N
// Position head to right of answer and halt
writey Y h R
writen N h R
$
abaa
baab

12

Step 0 : (start, #baab[#])
Step 1 : (evena, #baa[b])
Step 2 : (rem_e, #baa[#])
Step 3 : (evena, #ba[a])
Step 4 : (rem_o, #ba[#])
Step 5 : (odda, #b[a])
Step 6 : (rem_e, #b[#])
Step 7 : (evena, #[b])
Step 8 : (rem_e, #[#])
Step 9 : (evena, [#])
Step 10 : (writey, #[#])
Step 11 : (writey, #[Y])
Step 12 : (h, #Y[#])

Computation
on input baab
which is in L.

13

Step 0 : (start, #abaa[#])
Step 1 : (evena, #aba[a])
Step 2 : (rem_o, #aba[#])
Step 3 : (odda, #ab[a])
Step 4 : (rem_e, #ab[#])
Step 5 : (evena, #a[b])
Step 6 : (rem_e, #a[#])
Step 7 : (evena, #[a])
Step 8 : (rem_o, #[#])
Step 9 : (odda, [#])
Step 10 : (writen, #[#])
Step 11 : (writen, #[N])
Step 12 : (h, #N[#])

Computation
on input abaa
which is not
in L.

14

A COPY TM.

On input w  {a, b}*, this TM halts with w
followed by # followed by a copy of w.

That is:

(s, # w [#]) ├ * (h, # w # w [#]).

The program for this TM is available from
the page which gives the TM simulator.

The algorithm changes each a to A and each
b to B in the first copy of w to mark that it
has been copied over already.

15

// Find leftmost symbol of w not copied yet.

middle # goleft L
goleft a goleft L
goleft b goleft L
// Found either #, A, B from part being copied.
goleft A next_s R
goleft B next_s R
goleft # next_s R
// Go to # between w and copy of w
//remembering symbol to copy.
next_s a next_s A
next_s b next_s B
next_s A RtoM_a R
next_s B RtoM_b R

next_s # clean L // Done- clean up.

start state: middle

16

// Go right to the middle

RtoM_a a RtoM_a R
RtoM_a b RtoM_a R
RtoM_a # RtoR_a R

// Go right to the right hand end
RtoR_a a RtoR_a R
RtoR_a b RtoR_a R
RtoR_a # left1 a

// Go left to blank in middle.
left1 a left1 L
left1 b left1 L
left1 # middle #

RtoM_b a RtoM_b R
RtoM_b b RtoM_b R
RtoM_b # RtoR_b R

RtoR_b a RtoR_b R
RtoR_b b RtoR_b R
RtoR_b # left1 b

17

// Clean up the tape-

//change A back to a and B back to b.
clean A clean a
clean B clean b
clean a clean L
clean b clean L
clean # right1 R

// Position head to right of copy of w.
right1 a right1 R
right1 b right1 R
right1 # right2 R
right2 a right2 R
right2 b right2 R
right2 # h #

