L={a"b": n>0} Using a direct construction.
Start state: s Final states: {t}

Meaning of states: s: reada's t: read b's
State |Read |Pop |Next |[Push |[Comments
State
Push B on stack for each a in first
S a £ S B .
part of the string.
S £ £ t ¢ |Switch to reading in b’s.
t D B t ¢ |Match each b with B on stack.

Some accepting computations:
1. (s,€,€)F (t, € ¢€)

2. (s, aabb, €) (s, abb, B) - (s, bb, BB) F (t, bb, BB) -(t, b, B) - (t, €, €)

Start state: s

Final states: {1}

State |Read |Pop [Next |Push |[Comments
State
Push B on stack for each a in first
S a £ S B .
part of the string.
S € € t ¢ | Switch to reading in b’s.
t D B t ¢ |Match each b with B on stack.

Some non-accepting computations:

1.(s,a,€)F (s,& B)F(t g B) Stack not empty.
2. (s, abb,e)F (s,bb,B) - (t, bb, B) - (t, b, €) Input not consumed.

3.(s,aaba, €) - (s, aba, B) (s, ba, BB) (t, ba, BB) (t,a, B) Stuck.

L={a"b": n>0} Using grammar: S — aSb, S — ¢
Start state: s
s: Push start symbol

Final states: {1}

t: apply rules from grammar or read

State |[Read |Pop |Next |Push |Comments
State

S € € t S |Push start symbol on stack.
t € S t aSb |Apply rule: S — aSb
t € S t € |Applyrule:S — ¢

Match a’s in derivation with a’s in
t a a t £ .

the input.

Match b’s in derivation with b’s in
t b o) t € .

the input.

State |Read |Pop |Next |Push |Comments
State
S € € t S |Push start symbol on stack.
t € S t aSb |Apply rule: S — aSb
t € S t e |Applyrule:S — ¢
t a a t ¢ | Match a’'s in derivation with input.
t b b t ¢ |Match b’s in derivation with input.

Aderivation:S=aSb=aaSbb=aabb

he corresponding PDA computation that mimics this
derivation from the grammatr:

(s, aabb, €) (t, aabb, S) + (t, aabb, aSb) + (t, abb, Sb)
(t, abb, aSbb) + (t, bb, Sbb) + (t, bb, bb) - (t, b, b) - (t, €, €)

Design a PDA that accepts:

L, ={aPbicr :pzq}=L,UL;where
,={aPbic" :p<q} Ly={aPbic" ip>q}
Start state: s Final states: ?

State |Read |Pop |Next |Push |Comments
State

S £ £ sl ¢ |Use this for p <qg.

S £ £ S2 ¢ |Use this for p >q.

L,={aPbdc" : p<q} Start state: sl Final states: {ul}
sl: read a's t1: read b's ul: read c¢'s
State |Read |Pop |Next |Push |Comments
State
sl a £ sl b Match these a’s with b’s
sl £ £ sl b Use for extra b’s.
<1 c c 1 . Switch to reading b’s. Pushing b
ensures at least one extra b.
t1 b b t1 £ Match b’s with b’s on stack.
tl £ £ ul € | Switch to reading C’s.
ul C £ ul £ Read in C’s.

Ls;={aPbdc" : p>q} Start state: s2 Final states: {u2}
s2: read a's t2: read b's u2: read c's
State |Read |Pop |Next |Push |Comments
State
S2 a £ S2 b Match these a’s with b’s
S2 a £ S2 Use for extra a’s.
- a c t2 c Switch to reading b’s. Reading a
ensures at least one extra a.
t2 b b t2 £ Match b’s with b’s on stack.
t2 £ £ u2 € | Switch to reading C’s.
u2 C £ u2 £ Read in C’s.

Accepting computation for aabbbbbcc:

State |Read |Pop |Next |Push |Comments
State
sl a € sl D Match these a’'s with b’s
sl € € sl b Use for extra b’s.
<1 c c 01 . Switch to reading b’s. Pushing b
ensures at least one extra b.
t1 Db b t1 € Match b’s with b’s on stack.
t1 € £ ul € | Switch to reading C’s.
ul C € ul € Read in C's.

(s, aabbbbcc, €) - (s1, aabbbbcc, €) -* (s1, bbbbcc, bb) -
(s1, bbbbcc, bbb) - (t1, bbbbcc, bbbb) * (t1, cc, €)
- (ul, cc, €) -*(ul, €, €)

Accepting computation for aaaaabb:

State |Read |Pop |Next |Push|Comments
State
S2 a £ S2 b | Match these a’'s with b’s
S2 a € S2 Use for extra a’s.
- 3 c t2 c Switch to reading b’s. Reading a
ensures at least one extra a.
t2 D b t2 € Match b’s with b’s on stack.
2 £ £ u2 € | Switch to reading C’s.
u2 C € uz2 € Read in C’s.

(s, aaaaabb, €) (s2, aaaaabb, €) +* (s2, aaabb, bb)
(s2, abb, bbbb) - (t2, bb, bb) -* (t2, €, €)
- (U2, €, €)

