

State	Read	Рор	Next State	Push	Comments
S	а	3	S	В	Push B on stack for each a in first part of the string.
S	3	3	t	3	Switch to reading in b's.
t	b	B	t	3	Match each b with B on stack.

Some accepting computations: 1. $(s, \varepsilon, \varepsilon) \vdash (t, \varepsilon, \varepsilon)$

2. (s, aabb, ϵ) \vdash (s, abb, B) \vdash (s, bb, BB) \vdash (t, bb, BB) \vdash (t, b, B) \vdash (t, ϵ , ϵ)

Start state: s Final states: {t}

State	Read	Рор	Next State	Push	Comments
S	а	3	S	В	Push B on stack for each a in first part of the string.
S	3	3	t	3	Switch to reading in b's.
t	b	B	t	3	Match each b with B on stack.

Some non-accepting computations:

1. $(s, a, \epsilon) \vdash (s, \epsilon, B) \vdash (t, \epsilon, B)$ Stack not empty. 2. $(s, abb, \epsilon) \vdash (s, bb, B) \vdash (t, bb, B) \vdash (t, b, \epsilon)$ Input not consumed. 3. $(s, aaba, \epsilon) \vdash (s, aba, B) \vdash (s, ba, BB) \vdash (t, ba, BB) \vdash (t, a, B)$ Stuck.

State	Read	Рор	Next State	Push	Comments
S	3	ε	t	S	Push start symbol on stack.
t	3	S	t	aSb	Apply rule: $S \rightarrow aSb$
t	3	S	t	3	Apply rule: $S \rightarrow \epsilon$
t	а	а	t	3	Match a's in derivation with a's in the input.
t	b	b	t	3	Match b's in derivation with b's in the input.

State	Read	Рор	Next State	Push	Comments
S	3	3	t	S	Push start symbol on stack.
t	3	S	t	aSb	Apply rule: $S \rightarrow aSb$
t	3	S	t	3	Apply rule: $S \rightarrow \epsilon$
t	а	а	t	3	Match a's in derivation with input.
t	b	b	t	3	Match b's in derivation with input.

A derivation: $S \Rightarrow a \ S \ b \Rightarrow a \ a \ S \ b \Rightarrow a \ a \ b \ b$ The corresponding PDA computation that mimics this derivation from the grammar: (s, aabb, ϵ) \vdash (t, aabb, S) \vdash (t, aabb, aSb) \vdash (t, abb, Sb) \vdash

 $(t, abb, aSbb) \vdash (t, bb, Sbb) \vdash (t, bb, bb) \vdash (t, b, b) \vdash (t, \epsilon, \epsilon)$

Design a PDA that accepts:

$$L_1 = \{ a^p b^q c^r : p \neq q \} = L_2 \cup L_3 \text{ where}$$

$$L_2 = \{ a^p b^q c^r : p < q \} L_3 = \{ a^p b^q c^r : p > q \}$$

Start state: s Final states: ?

State	Read	Рор	Next State	Push	Comments
S	3	3	s1	3	Use this for $p < q$.
S	3	3	s2	3	Use this for $p > q$.

 $L_2 = \{a^p b^q c^r : p < q\}$ Start state: s1 Final states: {u1}

s1: read a's t1: read b's u1: read c's

State	Read	Рор	Next State	Push	Comments
s1	a	3	s1	b	Match these a's with b's
s1	3	3	s1	b	Use for extra b's.
s1	3	3	t1	b	Switch to reading b's. Pushing b ensures at least one extra b.
t1	b	b	t1	3	Match b's with b's on stack.
t1	3	3	u1	3	Switch to reading c's.
u1	С	3	u1	3	Read in c's.

 $L_3 = \{a^p b^q c^r : p > q\}$ Start state: s2 Final states: {u2}

s2: read a's t2: read b's u2: read c's

State	Read	Рор	Next State	Push	Comments
s2	a	3	s2	b	Match these a's with b's
s2	a	3	s2	3	Use for extra a's.
s2	а	3	t2	3	Switch to reading b's. Reading a ensures at least one extra a.
t2	b	b	t2	3	Match b's with b's on stack.
t2	3	3	u2	3	Switch to reading c's.
u2	С	3	u2	3	Read in c's.

Accepting computation for aabbbbbcc:

State	Read	Рор	Next State	Push	Comments
s1	a	3	s1	b	Match these a's with b's
s1	3	3	s1	b	Use for extra b's.
s1	3	3	t1	b	Switch to reading b's. Pushing b ensures at least one extra b.
t1	b	b	t1	3	Match b's with b's on stack.
t1	3	3	u1	3	Switch to reading c's.
u1	С	3	u1	3	Read in c's.

(s, aabbbbcc, ε) \vdash (s1, aabbbbcc, ε) \vdash * (s1, bbbbcc, bb) \vdash (s1, bbbbcc, bbb) \vdash (t1, bbbbcc, bbb) \vdash * (t1, cc, ε) \vdash (u1, cc, ε) \vdash * (u1, ε , ε)

Accepting computation for aaaaabb:

State	Read	Рор	Next State	Push	Comments
s2	a	3	s2	b	Match these a's with b's
s2	a	3	s2	3	Use for extra a's.
s2	а	3	t2	3	Switch to reading b's. Reading a ensures at least one extra a.
t2	b	b	t2	3	Match b's with b's on stack.
t2	3	3	u2	3	Switch to reading c's.
u2	С	3	u2	3	Read in c's.

(s, aaaaabb, ε) \vdash (s2, aaaaabb, ε) \vdash * (s2, aaabb, bb) \vdash (s2, abb, bbbb) \vdash (t2, bb, bb) \vdash * (t2, ε , ε) \vdash (u2, ε , ε)