
L= {an bn : n ≥ 0} Using a direct construction.
Start state: s Final states: {t}
Meaning of states: s: read a’s t: read b’s

State Read Pop Next

State

Push Comments

s a ε s B
Push B on stack for each a in first

part of the string.

s ε ε t ε Switch to reading in b’s.

t b B t ε Match each b with B on stack.

Some accepting computations:

1. (s, ε, ε) ⊢ (t, ε, ε)

2. (s, aabb, ε) ⊢ (s, abb, B) ⊢ (s, bb, BB) ⊢ (t, bb, BB) ⊢(t, b, B) ⊢ (t, ε, ε)

Start state: s Final states: {t}

State Read Pop Next

State

Push Comments

s a ε s B
Push B on stack for each a in first

part of the string.

s ε ε t ε Switch to reading in b’s.

t b B t ε Match each b with B on stack.

Some non-accepting computations:

1. (s, a, ε) ⊢ (s, ε, B) ⊢ (t, ε, B) Stack not empty.

2. (s, abb, ε) ⊢ (s, bb, B) ⊢ (t, bb, B) ⊢ (t, b, ε) Input not consumed.

3. (s, aaba, ε) ⊢ (s, aba, B) ⊢ (s, ba, BB) ⊢ (t, ba, BB) ⊢ (t, a, B) Stuck.

State Read Pop Next

State

Push Comments

s ε ε t S Push start symbol on stack.

t ε S t aSb Apply rule: S → aSb

t ε S t ε Apply rule: S → ε

t a a t ε
Match a’s in derivation with a’s in

the input.

t b b t ε
Match b’s in derivation with b’s in

the input.

L= {an bn : n ≥ 0} Using grammar: S → aSb, S → ε
Start state: s Final states: {t}
s: Push start symbol t: apply rules from grammar or read

State Read Pop Next

State

Push Comments

s ε ε t S Push start symbol on stack.

t ε S t aSb Apply rule: S → aSb

t ε S t ε Apply rule: S → ε

t a a t ε Match a’s in derivation with input.

t b b t ε Match b’s in derivation with input.

A derivation: S a S b a a S b b a a b b

The corresponding PDA computation that mimics this

derivation from the grammar:

(s, aabb, ε) ⊢ (t, aabb, S) ⊢ (t, aabb, aSb) ⊢ (t, abb, Sb) ⊢
(t, abb, aSbb) ⊢ (t, bb, Sbb) ⊢ (t, bb, bb) ⊢ (t, b, b) ⊢ (t, ε, ε)

5

Design a PDA that accepts:

L1 = { ap bq cr : p ≠ q } = L2 ⋃ L3 where

L2 = { ap bq cr : p < q } L3 = { ap bq cr : p > q }

Start state: s Final states: ?

State Read Pop Next

State

Push Comments

s ε ε s1 ε Use this for p < q.

s ε ε s2 ε Use this for p > q.

6

L2 = { ap bq cr : p < q } Start state: s1 Final states: {u1}

s1: read a’s t1: read b’s u1: read c’s

State Read Pop Next

State

Push Comments

s1 a ε s1 b Match these a’s with b’s

s1 ε ε s1 b Use for extra b’s.

s1 ε ε t1 b
Switch to reading b’s. Pushing b

ensures at least one extra b.

t1 b b t1 ε Match b’s with b’s on stack.

t1 ε ε u1 ε Switch to reading c’s.

u1 c ε u1 ε Read in c’s.

7

L3 = { ap bq cr : p > q } Start state: s2 Final states: {u2}

s2: read a’s t2: read b’s u2: read c’s

State Read Pop Next

State

Push Comments

s2 a ε s2 b Match these a’s with b’s

s2 a ε s2 ε Use for extra a’s.

s2 a ε t2 ε
Switch to reading b’s. Reading a

ensures at least one extra a.

t2 b b t2 ε Match b’s with b’s on stack.

t2 ε ε u2 ε Switch to reading c’s.

u2 c ε u2 ε Read in c’s.

8

Accepting computation for aabbbbbcc:

State Read Pop Next

State

Push Comments

s1 a ε s1 b Match these a’s with b’s

s1 ε ε s1 b Use for extra b’s.

s1 ε ε t1 b
Switch to reading b’s. Pushing b

ensures at least one extra b.

t1 b b t1 ε Match b’s with b’s on stack.

t1 ε ε u1 ε Switch to reading c’s.

u1 c ε u1 ε Read in c’s.

(s, aabbbbcc, ε) ⊢ (s1, aabbbbcc, ε) ⊢* (s1, bbbbcc, bb) ⊢
(s1, bbbbcc, bbb) ⊢ (t1, bbbbcc, bbbb) ⊢* (t1, cc, ε)

⊢ (u1, cc, ε) ⊢* (u1, ε, ε)

9

Accepting computation for aaaaabb:

(s, aaaaabb, ε) ⊢ (s2, aaaaabb, ε) ⊢* (s2, aaabb, bb) ⊢
(s2, abb, bbbb) ⊢ (t2, bb, bb) ⊢* (t2, ε, ε)

⊢ (u2, ε, ε)

State Read Pop Next

State

Push Comments

s2 a ε s2 b Match these a’s with b’s

s2 a ε s2 ε Use for extra a’s.

s2 a ε t2 ε
Switch to reading b’s. Reading a

ensures at least one extra a.

t2 b b t2 ε Match b’s with b’s on stack.

t2 ε ε u2 ε Switch to reading c’s.

u2 c ε u2 ε Read in c’s.

