$L=\left\{a^{n} b^{n}: n \geq 0\right\}$ Using a direct construction. Start state: s Final states: $\{\dagger\}$ Meaning of states: s : read a's $\quad t$: read b's

State	Read	Pop	Next State	Push	Comments
s	a	ε	s	B	Push B on stack for each a in first part of the string.
s	ε	ε	t	ε	Switch to reading in b's.
t	b	B	t	ε	Match each b with B on stack.

Some accepting computations:

1. $(\mathrm{s}, \varepsilon, \varepsilon) \vdash(\mathrm{t}, \varepsilon, \varepsilon)$
2. $(\mathrm{s}, \mathrm{aabb}, \varepsilon) \vdash(\mathrm{s}, \mathrm{abb}, \mathrm{B}) \vdash(\mathrm{s}, \mathrm{bb}, \mathrm{BB}) \vdash(\mathrm{t}, \mathrm{bb}, \mathrm{BB}) \vdash(\mathrm{t}, \mathrm{b}, \mathrm{B}) \vdash(\mathrm{t}, \varepsilon, \varepsilon)$

Start state: $s \quad$ Final states: $\{\dagger\}$

State	Read	Pop	Next State	Push	Comments
s	a	ε	s	B	Push B on stack for each a in first part of the string.
s	ε	ε	t	ε	Switch to reading in b's.
t	b	B	t	ε	Match each b with B on stack.

Some non-accepting computations:

1. $(\mathrm{s}, \mathrm{a}, \varepsilon) \vdash(\mathrm{s}, \varepsilon, \mathrm{B}) \vdash(\mathrm{t}, \varepsilon, \mathrm{B})$ Stack not empty.
2. $(\mathrm{s}, \mathrm{abb}, \varepsilon) \vdash(\mathrm{s}, \mathrm{bb}, \mathrm{B}) \vdash(\mathrm{t}, \mathrm{bb}, \mathrm{B}) \vdash(\mathrm{t}, \mathrm{b}, \varepsilon)$ Input not consumed.
3. $(\mathrm{s}, \mathrm{aaba}, \varepsilon) \vdash(\mathrm{s}, \mathrm{aba}, \mathrm{B}) \vdash(\mathrm{s}, \mathrm{ba}, \mathrm{BB}) \vdash(\mathrm{t}, \mathrm{ba}, \mathrm{BB}) \vdash(\mathrm{t}, \mathrm{a}, \mathrm{B})$ Stuck.
$L=\left\{a^{n} b^{n}: n \geq 0\right\}$ Using grammar: $S \rightarrow a S b, S \rightarrow \varepsilon$
Start state: s Final states: $\{\dagger\}$
s : Push start symbol $\quad t$: apply rules from grammar or read

State	Read	Pop	Next State	Push	Comments
s	ε	ε	t	S	Push start symbol on stack.
t	ε	S	t	aSb	Apply rule: $\mathrm{S} \rightarrow \mathrm{aSb}$
t	ε	S	t	ε	Apply rule: $\mathrm{S} \rightarrow \varepsilon$
t	a	a	t	ε	Match a's in derivation with a's in the input.
t	b	b	t	ε	Match b's in derivation with b's in the input.

State	Read	Pop	Next State	Push	Comments
s	ε	ε	t	S	Push start symbol on stack.
t	ε	S	t	aSb	Apply rule: $\mathrm{S} \rightarrow$ aSb
t	ε	S	t	ε	Apply rule: $\mathrm{S} \rightarrow \varepsilon$
t	a	a	t	ε	Match a's in derivation with input.
t	b	b	t	ε	Match b's in derivation with input.

A derivation: $S \Rightarrow a S b \Rightarrow a \mathrm{a} S b b \Rightarrow a \mathrm{ab} b$
The corresponding PDA computation that mimics this derivation from the grammar:
$(\mathrm{s}, \mathrm{aabb}, \varepsilon) \vdash(\mathrm{t}, \mathrm{aabb}, \mathrm{S}) \vdash(\mathrm{t}, \mathrm{aabb}, \mathrm{aSb}) \vdash(\mathrm{t}, \mathrm{abb}, \mathrm{Sb}) \vdash$ $(\mathrm{t}, \mathrm{abb}, \mathrm{aSbb}) \vdash(\mathrm{t}, \mathrm{bb}, \mathrm{Sbb}) \vdash(\mathrm{t}, \mathrm{bb}, \mathrm{bb}) \vdash(\mathrm{t}, \mathrm{b}, \mathrm{b}) \vdash(\mathrm{t}, \varepsilon, \varepsilon)$

Design a PDA that accepts:

$$
\begin{aligned}
& L_{1}=\left\{a^{p} b^{q} c^{r}: p \neq q\right\}=L_{2} \cup L_{3} \text { where } \\
& L_{2}=\left\{a^{p} b^{q} c^{r}: p<q\right\} L_{3}=\left\{a^{p} b^{q} c^{r}: p>q\right\}
\end{aligned}
$$

Start state: s Final states:?

State	Read	Pop	Next State	Push	Comments
s	ε	ε	s 1	ε	Use this for $\mathrm{p}<\mathrm{q}$.
s	ε	ε	s 2	ε	Use this for $\mathrm{p}>\mathrm{q}$.

$L_{2}=\left\{a^{p} b^{q} c^{r}: p<q\right\}$ Start state: s1 Final states: $\{u 1\}$ s1:read a's t1: read b's u1: read c's

State	Read	Pop	Next State	Push	Comments
s 1	a	ε	s 1	b	Match these a's with b's
s 1	ε	ε	s 1	b	Use for extra b's.
s 1	ε	ε	t 1	b	Switch to reading b's. Pushing b ensures at least one extra b.
t 1	b	b	t 1	ε	Match b's with b's on stack.
t 1	ε	ε	u 1	ε	Switch to reading c's.
u 1	c	ε	u 1	ε	Read in c's.

$L_{3}=\left\{a^{p} b^{q} c^{r}: p>q\right\}$ Start state: s2 Final states: $\{u 2\}$
s2: read a's t2: read b's u2: read c's

State	Read	Pop	Next State	Push	Comments
s2	a	ε	$s 2$	b	Match these a's with b's
s2	a	ε	s 2	ε	Use for extra a's.
s2	a	ε	t2	ε	Switch to reading b's. Reading a ensures at least one extra a.
t2	b	b	t2	ε	Match b's with b's on stack.
t2	ε	ε	u2	ε	Switch to reading c's.
u2	c	ε	u2	ε	Read in c's.

Accepting computation for aabbbbbcc:

State	Read	Pop	Next State	Push	Comments
s 1	a	ε	s 1	b	Match these a's with b's
s 1	ε	ε	s 1	b	Use for extra b's.
s 1	ε	ε	t 1	b	Switch to reading b's. Pushing b ensures at least one extra b.
t 1	b	b	t 1	ε	Match b's with b's on stack.
t 1	ε	ε	$\mathrm{u1}$	ε	Switch to reading c's.
u 1	c	ε	u 1	ε	Read in c's.

$(\mathrm{s}$, aabbbbcc, $\varepsilon) \vdash(\mathrm{s} 1$, aabbbbcc, $\varepsilon) \vdash^{*}(\mathrm{~s} 1, \mathrm{bbbbcc}, \mathrm{bb}) \vdash$ $(s 1, \mathrm{bbbbcc}, \mathrm{bbb}) \vdash(\mathrm{t} 1, \mathrm{bbbbcc}, \mathrm{bbbb}) \vdash^{*}(\mathrm{t} 1, \mathrm{cc}, \varepsilon)$
$\vdash(u 1, \mathrm{cc}, \varepsilon) \vdash^{*}(u 1, \varepsilon, \varepsilon)$

Accepting computation for aaaaabb:

State	Read	Pop	Next State	Push	Comments
s2	a	ε	s 2	b	Match these a's with b's
s2	a	ε	s 2	ε	Use for extra a's.
s2	a	ε	t2	ε	Switch to reading b's. Reading a ensures at least one extra a.
t2	b	b	t2	ε	Match b's with b's on stack.
t2	ε	ε	u2	ε	Switch to reading c's.
u2	c	ε	u2	ε	Read in c's.

$(s, ~ a a a a a b b, \varepsilon) \vdash(s 2$, aaaaabb, $\varepsilon) \vdash^{*}(s 2, a a a b b, b b) \vdash$ $(\mathrm{s} 2, \mathrm{abb}, \mathrm{bbbb}) \vdash(\mathrm{t} 2, \mathrm{bb}, \mathrm{bb}) \vdash^{*}(\mathrm{t} 2, \varepsilon, \varepsilon)$
$\vdash(u 2, \varepsilon, \varepsilon)$

