Design a PDA that accepts:

 $L_1 = \{ a^p b^q c^r : p \neq q \}$

Hint:

 L_1 is the union of two languages:

$$L_2 = \{ a^p b^q c^r : p < q \}$$

$$L_3 = \{ a^p b^q c^r : p > q \}$$

Closure Properties of Context-free Languages

Intersecting a context-free language and a regular language gives a context-free language.

Context-free languages are closed under union, concatenation and Kleene star.

Context-free languages are not closed under intersection or complement.

Thought question: are they closed under difference/exclusive or?

Theorem:

If L_1 is context-free and L_2 is regular then $L_1 \cap L_2$ is context-free.

Proof:

By construction. This proof is similar to the one on the assignment proving closure of regular languages under intersection. L= $\{ w c w^R : w \in \{a, b\}^* \} \cap a^* c a^* \}$ Start state: s, Final State: $\{t\}$

State	Input	Pop	Next state	Push
S	а	3	S	Α
S	b	3	S	В
S	С	3	t	3
t	а	Α	t	3
t	b	В	t	3

Theorem:

Context-free languages are closed under union, concatenation and Kleene star.

Proof: By construction.

Let
$$G_1 = (V_1, \Sigma, R_1, S_1)$$
 and

let
$$G_2 = (V_2, \Sigma, R_2, S_2)$$
.

We show how to construct a grammar G= (V, Σ, R, S) for $L(G_1) \cup L(G_2)$, $L(G_1) \cdot L(G_2)$, and $L(G_1)^*$.

$$\begin{array}{l} L_1 = \{ \ a^n \ b^{2n} : \ n \ge 0 \} \\ \\ S_1 \rightarrow a \ S_1 \ bb \\ \\ S_1 \rightarrow \epsilon \\ \\ L_2 = \{ \ u \ u^R \ v : \ u, \ v \ in \ \{a, \ b\}^+ \} \\ \\ S_2 \rightarrow U_2 \ V_2 \qquad U_2 \rightarrow a \ U_2 \ a \qquad V_2 \rightarrow a \ V_2 \\ \\ U_2 \rightarrow b \ U_2 \ b \qquad V_2 \rightarrow b \ V_2 \\ \\ U_2 \rightarrow a a \qquad V_2 \rightarrow a \\ \\ U_2 \rightarrow b b \qquad V_2 \rightarrow b \end{array}$$

$$L_1 = \{ a^n b^{2n} : n \ge 0 \}$$

UNION:

$$S_1 \rightarrow a S_1 bb$$

$$S_1 \rightarrow \epsilon$$

$$S \rightarrow S_1$$

$$S \rightarrow S_2$$

$$L_2 = \{ u u^R v : u, v in \{a, b\}^+ \}$$

$$S_2 \rightarrow U_2 V_2$$

$$U_2 \rightarrow a U_2 a$$

$$V_2 \rightarrow a V_2$$

$$U_2 \rightarrow b U_2 b$$

$$V_2 \rightarrow b V_2$$

$$U_2 \rightarrow aa$$

$$V_2 \rightarrow a$$

$$U_2 \rightarrow bb$$

$$V_2 \rightarrow b$$

$$L_1 = \{ a^n b^{2n} : n \ge 0 \}$$

CONCATENATION:

$$S_1 \rightarrow a S_1 bb$$

$$S_1 \rightarrow \epsilon$$

$$S \rightarrow S_1 S_2$$

$$L_2 = \{ u u^R v : u, v in \{a, b\}^+ \}$$

$$S_2 \rightarrow U_2 V_2$$

$$U_2 \rightarrow a U_2 a$$

$$V_2 \rightarrow a V_2$$

$$U_2 \rightarrow b U_2 b$$

$$V_2 \rightarrow b V_2$$

$$U_2 \rightarrow aa$$

$$V_2 \rightarrow a$$

$$U_2 \rightarrow bb$$

$$V_2 \rightarrow b$$

KLEENE STAR:

Start symbol S

$$S \rightarrow S_1 S$$

$$S \rightarrow \epsilon$$

$$L_1 = \{ a^n b^{2n} : n \ge 0 \}$$

$$S_1 \rightarrow a S_1 bb$$

$$S_1 \rightarrow \epsilon$$

KLEENE STAR: Start symbol S

$$S \rightarrow S_2 S$$

 $S \rightarrow \varepsilon$
 $L_2 = \{ u u^R v : u, v in \{a, b\}^+ \}$
 $S_2 \rightarrow U_2 V_2$ $U_2 \rightarrow a U_2 a$ $V_2 \rightarrow a V_2$
 $U_2 \rightarrow b U_2 b$ $V_2 \rightarrow b V_2$
 $U_2 \rightarrow aa$ $V_2 \rightarrow a$

 $U_2 \rightarrow bb$

 $V_2 \rightarrow b$

Theorem: $L = \{ a^n b^n c^n : n \ge 0 \}$ is not context-free.

We will prove this soon using the pumping theorem.

$$L_1 = \{ a^p b^q c^r : p = q \}$$

Design a PDA for L_1 .

$$L_2 = \{ a^p b^q c^r : p = r \}$$

Design a context-free grammar for L_2 .

This proves L_1 and L_2 are context-free.

$$L_1 \cap L_2 = \{ a^n b^n c^n : n \ge 0 \}.$$

Therefore, context-free languages are not closed under intersection.

```
L = { a^{n} b^{n} c^{n} : n \ge 0}

L<sub>1</sub> = { a^{p} b^{q} c^{r} : p \ne q }

L<sub>2</sub> = { a^{p} b^{q} c^{r} : p \ne r }

L<sub>3</sub> = { a^{p} b^{q} c^{r} : q \ne r }
```

The complement of L is NOT equal to $L_1 \cup L_2 \cup L_3$.

Which strings are in the complement of L but not in $L_1 \cup L_2 \cup L_3$?

```
L = \{ a^n b^n c^n : n \ge 0 \}
L_1 = \{ a^p b^q c^r : p \neq q \}
L_2 = \{ a^p b^q c^r : p \neq r \}
L_3 = \{ a^p b^q c^r : q \neq r \}
L_4 = \{ w \in \{a, b, c\}^* : w \notin a^* b^* c^* \}
L_1 \cup L_2 \cup L_3 \cup L_4 is context-free and is the
complement of L.
```

Therefore, context-free languages are not closed under complement.

- (a) If $x \notin L_1$ and $y \notin L_2$ then $x \cdot y \notin L_1 \cdot L_2$.
- (b) A regular language can contain a subset which is not a regular language.
- (c) The set ϕ * does not contain any strings.

(d) If
$$L = \{ w \in \{ a, b \}^* : w = a^n b^n, n \ge 0 \}$$
,
then $\overline{L} = \{ w \in \{ a, b \}^* : w = a^n b^m, n > m \}$
 $\cup \{ w \in \{ a, b \}^* : w = a^n b^m, n < m \}$.

Critique this PDA for

L= {
$$u u^R v v^R : u \in \{0,1\}^* \text{ and } v \in \{0,1\}^+ \}$$

S	3	3	t	3
t	0	3	t	0
t	1	3	t	1
t	0	0	t	3
t	1	1	t	3
t	3	3	u	3

u	0	3	u	0
u	1	3	u	1
u	3	3	V	3
V	0	0	V	3
V	1	1	V	3
V	3	3	f	3

After you identify the bugs and inefficiencies, design a nicer PDA for this language that is correct.