L= { $a^{p}b^{q}c^{r}d^{s}: p, q, r, s \ge 0, p+q = r+s$ } 1. Design a PDA that accepts L. Hint: use four states, one for reading each different type of symbol. 2. Design a context-free grammar that generates L.

- A grammar for L_2 :
- L= { $a^{p} b^{q} c^{r} d^{s} : p, q, r, s \ge 0, p+q = r+s$ }

Meaning:

- S: match a with d
- T: match a with c
- U: match b with d
- V: match b with c

L= { $a^{p} b^{q} c^{r} d^{s} : p, q, r, s \ge 0, p+q = r+s$ }

 $S \rightarrow T$

 $S \rightarrow U$

 $S \rightarrow V$

Meaning:

- S: match a with d
- T: match a with c
- U: match b with d
- V: match b with c
 - Start symbol: S
- $T \rightarrow a T c$ $S \rightarrow a S d$ $T \rightarrow V$ $U \rightarrow b U d$ $U \rightarrow V$ $V \rightarrow b V c$
 - $V \rightarrow \epsilon$

Design a PDA which accepts the language $\{ u \ u^R \ v \ v^R : u, v \in \{a,b\}^+ \}$

Hint: A bottom of the stack symbol could prove useful in helping to ensure that u matches with u^R and v matches with v^R.

Languages which are context-free.

id

а

Theorem:

If L is L(G) for some context-free grammar G, then there is a PDA M which accepts L.

Proof: By construction of a PDA which mimics derivations in the grammar.

- A context-free grammar, start symbol S:
- $S \to \epsilon$
- $\mathsf{S} \to \mathsf{A} \ \mathsf{B} \ \mathsf{A}$
- $A \rightarrow aa$
- $B \rightarrow b S a$

Apply construction to get a PDA.

Theorem: If L is a language which is accepted by some PDA M, then there is a context-free grammar which generates L.

Proof: The basic idea of the proof is to first define simple PDA's (except for at the start, one symbol is popped and 0,1, or 2 symbols are pushed for each transition).

They then show how to construct a context-free grammar from a simple PDA.

You are not responsible for this proof.