1. Draw a parse tree for the following derivation:

$$
S \Rightarrow C A C \Rightarrow C A b b \Rightarrow b b A b b \Rightarrow
$$

$b b B b b \Rightarrow b b a A a a b b$
$\Rightarrow b b a b a a b b$
2. Show on your parse tree u, v, x, y, z as per the pumping theorem.
3. Prove that the language for this question is an infinite language.

Wednesday June 21:
Midterm exam in class.
Recall that you need to have at least 50\% For your assignment average.

Your lowest assignment mark will be dropped in computing your average.
$L=\left\{a^{n} b^{p}: \quad n \leq p \leq 3 n, n, p \geq 0\right\}$
Start symbol S.
$S \rightarrow a S b$
$S \rightarrow \varepsilon$
$S \rightarrow a S b b$
$S \rightarrow a S b b b$
This works because any integer p can be expressed as:
$p=r+2(n-r) \quad$ when $n \leq p \leq 2 n$, and
$p=2 r+3(n-r) \quad$ when $2 n \leq p \leq 3 n$.

Prove the following languages are contextfree by designing context-free grammars which generate them:
$L_{1}=\left\{a^{n} b^{n} c^{p}: n, p \geq 0\right\}$
$L_{2}=\left\{a^{n} b^{p} c^{n}: n, p \geq 0\right\}$
$L_{3}=\left\{a^{n} b^{m}: n \neq m, n, m \geq 0\right\}$
Hint: $L_{3}=\left\{a^{n} b^{m}: n<m\right\} \cup\left\{a^{n} b^{m}: n>m\right\}$
$L_{4}=\left\{c u c \vee c:|u|=|v|, \quad u, v \in\{a, b\}^{*}\right\}$
What is $L_{1} \cap L_{2}$?

Pushdown Automata

Figure 7.4 A push-down automaton
Picture from: Torsten Schaßan

Pushdown Automata:

A pushdown automaton is like a NDFA which has a stack.

Every context-free language has a pushdown automaton that accepts it.
This lecture starts with some examples, gives the formal definition, then investigates PDA's further.

Stack Data Structure: permits push and pop at the top of the stack.

$L=\left\{w c w^{R}: w \in\{a, b\}^{*}\right\}$
Start state: s, Final State: $\{\dagger\}$

State	Input	Pop	Next state	Push
s	a	ε	s	A
s	b	ε	s	B
s	c	ε	t	ε
t	a	A	t	ε
t	b	B	t	ε

To accept, there must exist a computation which:

1. Starts in the start state with an empty stack.
2. Applies transitions of the PDA which are applicable at each step.
3. Consumes all the input.
4. Terminates in a final state with an empty stack.
$w=a b b c b b a$

Stack is

(s, abbcbba, $\varepsilon)\left.\right|^{*}$ knocked
$(s, c b b a, B B A)+$
over like this:
$\left.(\dagger, b b a, B B A)\right|^{*}$
$(\dagger, \varepsilon, \varepsilon)$

A pushdown automaton is a sextuple $M=(K, \Sigma, \Gamma, \Delta, s, F)$ where
K is a finite set of states,
Σ is an alphabet (the input symbols)
Γ is an alphabet (the stack symbols)
Δ, the transition relation,
is a finite subset of

A configuration of a PDA is a member of

$$
K \times \Sigma^{*} \times \Gamma^{*}
$$

current state input remaining stack
A configuration $(q, \sigma w, \alpha x) \mid(r, w, \beta x)$ if $((q, \sigma, a),(r, \beta)) \in \Delta$.
For $M=(K, \Sigma, \Gamma, \Delta, s, F)$,
$L(M)$ (the language accepted by M) =
$\left\{w \in \Sigma^{\star}:\left.(s, w, \varepsilon)\right|^{\star}(f, \varepsilon, \varepsilon)\right.$ for some
final state f in F.

$$
\begin{aligned}
& L(M)=\left\{w \in \Sigma^{\star}:(s, w, \varepsilon) \vdash^{*}(f, \varepsilon, \varepsilon)\right. \text { for } \\
& \text { some final state } f \text { in } F\} \text {. }
\end{aligned}
$$

To accept, there must exist a computation which:

1. Starts in the start state with an empty stack.
2. Applies transitions of the PDA which are applicable at each step.
3. Consumes all the input.
4. Terminates in a final state with an empty stack.

PDA's are non-deterministic:

$$
L=\left\{w w^{R}: w \in\{a, b\}^{*}\right\}
$$

Start state: s, Final State: $\{\dagger\}$

State	Input	Pop	Next state	Push
s	a	ε	s	A
s	b	ε	s	B
s	ε	ε	t	ε
t	a	A	t	ε
t	b	B	t	ε

Guessing wrong time to switch from s to t gives non-accepting computations.

Some non-accepting computations on aaaa:

1. Transfer to state \dagger too early:
$(s, a a a a, \varepsilon) \vdash \quad(s, a a a, A) \vdash(t, a a a, A)$
$\vdash(\dagger, a a, \varepsilon)$
Cannot finish reading input because stack is empty.
2. Transfer to state \dagger too late:
$(s, a a a a, \varepsilon) \vdash(s, a a a, A) \vdash(s, a a, A A)$
$\vdash(s, a, A A A) \vdash(\dagger, a, A A A) \vdash(\dagger, \varepsilon, A A)$
Cannot empty stack.

Accepting computation on aaaa:

$(s, a a a a, \varepsilon) \vdash \quad(s, a a a, A) \vdash(s, a a, A A)$
$\vdash(t, a a, A A) \vdash(t, a, A) \vdash(t, \varepsilon, \varepsilon)$

The computation started in the start state with the input string and an empty stack. It terminated in a final state with all the input consumed and an empty stack.
$L=\left\{w\right.$ in $\{a, b\}^{*}: w$ has the same number of a's and b's\}

Start state: s
Final states: $\{s\}$

State	Input	Pop	Next state	Push
s	a	ε	s	B
s	a	A	s	ε
s	b	ε	s	A
s	b	B	s	ε

$L=\left\{w\right.$ in $\{a, b\}^{*}: w$ has the same number of a 's and $\left.b ' s\right\}$
State state: s, Final states: $\{f\}$

State	Input	Pop	Next state	Push
s	ε	ε	t	X
t	a	X	t	BX
t	a	A	t	ε
t	a	B	t	BB
t	b	X	t	AX
t	b	A	t	AA
t	b	B	t	ε
t	ε	X	f	ε

A more deterministic solution:

Stack will never contain both A's and B's.

X- bottom of stack marker.

Design contex-free grammars that generate:

$$
L_{1}=\left\{u v: u \in\{a, b\}^{*}, v \in\{a, c\}^{*},\right.
$$

$$
\text { and }|u| \leq|v| \leq 3|u|\} \text {. }
$$

$$
L_{2}=\left\{a^{p} b^{q} c^{p} a^{r} b^{2 r}: p, q, r \geq 0\right\}
$$

