
1

Given the DFA below which accepts L,  prove that  LR = { uR : 
u  L} is regular by designing a NDFA which accepts LR.

For example, abaa is in L so (abaa)R = aaba is in LR.



2

Announcements

The midterm is in class on Wed. June 21.
There is a tutorial on Tuesday June 13.
No tutorial on Tuesday June 20.
Midterm tutorial: Monday June 19, 6:30pm, ECS 123.
Bring any questions you have about assignments 1-3,
old midterms or any other class material.

Assignment 3 is due on Friday at the beginning of 
class.

The preliminary final exam schedule has CSC 320 at 
2pm on Monday August 14.



3

Let L = { an bp  :  n+4 ≤  p ≤  5n+7}

1.What string w would you choose if you 
want to prove that L is not regular?

2. What are the cases for y?

3. How many times would you 
pump for each case?

4. If you chose instead w= ar b2r where all 
you assume is that k ≤ 3r, how does this 
change the proof?



4

The Pumping Lemma for Regular Languages:

If L is a language accepted by a DFA with k

states, and  w L, |w| ≥ k, then there exists 

x, y, z such that

1. w = x y z,

2. y ≠ ε,

3. | x y | ≤ k, and

4. x yn z is in L for all n ≥ 0.



5

Recipe for using the pumping lemma (proof 
by contradiction):
1.Assume L is regular and is accepted 

by a  DFA M that has k states.
2. Choose w so that w ∈ L and |w | ≥ k.
3. Find all factorizations of w as w=xyz

such that |xy|≤ k and y is not the 
empty string.

4. For each factorization of w, find n 
so that when you pump n times to get
x yn z the resulting string is not in L.
Make sure you look at the definition of L 
here and not just the pattern for w.



6

What machine M2 would your construction 
from assignment 2 create as input for 
isEmpty given this machine M1 and u=aaba:

Black box image from:
http://socialcapitalmarkets.net/2013/04/03/whats-inside-the-socap13-black-box/



7

Algorithms to 
Answer 
Questions 
about Regular 
Languages

if (if23==23)         
x= -23.2e23-6;

http://www.cgl.ucsf.edu/Outreach/bmi280/slides/swc/lec/re.html



8

The first step of a 
compiler is to break your 
program into tokens. 
Tokens:

Keywords: if

Brackets:    (     ) 

Variables:  if23  x

Assignment:  =

Math Operator:   -

if (if23==23) 
x= -23.2e23-6;

Logical:   ==

Delimiter:  ;

Double:-23.2e23

Integers: 23  6



9

Keywords: 

if ⋃ while ⋃ int ⋃ double ⋃ switch ⋃ ….

Variables: Not a Keyword but of the form:

(a-z  ⋃ A-Z)(a-z ⋃ A-Z  ⋃ 0-9  ⋃ _ )*

Non-negative Integers: N= (0 ⋃ (1-9)(0-9)*)

Numeric values: 

(Ф* ⋃ - ) ⋃ N (Ф* ⋃ . (0-9)*)

(Ф* ⋃ (e⋃E)(Ф* ⋃ + ⋃ - ) N  )



10

The pumping lemma or closure properties 
can be used to prove languages are not 
regular. 

Regular languages are closed under:

• union

• concatenation

• Kleene star

• complement

• intersection

• exclusive or

• difference

• reversal



11

There are algorithms for the following questions 
about regular languages:

1. Given a DFA M and a string w, is w  L(M)?

2. Given a DFA M, is L(M) = Ф?

3. Given a DFA M, is L(M) = Σ* ?

4. Given DFA’s M1 and M2, is L(M1)  L(M2)? 

5. Given DFA’s M1 and M2, is L(M1) = L(M2)? 

How can we use these to check correctness 
of student answers for the java tutorial?



12

Java Regular expression tutorial:

S= student answer, T= teacher answer

Strings student generates but should not.

Is S intersect the complement of T =  Ф? 



13

Java Regular expression tutorial:

S= student answer, T= teacher answer

Strings student should generate but does not.

Is T intersect the complement of S = Ф?



14

The Pumping Lemma for Regular Languages:

If L is a language accepted by a DFA with k 
states, and  w L, |w| ≥ k, then  x, y, z such 
that

1. w = x y z,

2. y ≠ ε,

3. | x y | ≤ k, and

4. x yn z is in L for all n ≥ 0.

The pumping lemma is NOT strong 
enough to work directly to prove that 
certain languages are not regular.



15

Let L be a language which has a constant k such 
that for all w  L, |w| ≥ k,   x, y, z such that

1. w = x y z,

2. y ≠ ε,

3. | x y | ≤ k, and

4. x yn z is in L for all n ≥ 0.

Then you CANNOT conclude that L is regular.

Counterexample: See assignment 3.

L1= { u uR v : u, v in {0, 1}+} 

This is necessary but 
not sufficient for a 
language to be 
regular.


