Given the DFA below which accepts L, prove that $L^{R} = \{ u^{R} : u \in L \}$ is regular by designing a NDFA which accepts L^{R} .

For example, abaa is in L so $(abaa)^{R}$ = aaba is in L^R.

Announcements

The midterm is in class on Wed. June 21. There is a tutorial on Tuesday June 13. No tutorial on Tuesday June 20. Midterm tutorial: Monday June 19, 6:30pm, ECS 123. Bring any questions you have about assignments 1-3, old midterms or any other class material.

Assignment 3 is due on Friday at the beginning of class.

The preliminary final exam schedule has CSC 320 at 2pm on Monday August 14.

Let $L = \{ a^n b^p : n+4 \le p \le 5n+7 \}$

1.What string w would you choose if you want to prove that L is not regular?

2. What are the cases for y?

3. How many times would you pump for each case?

4. If you chose instead w= $a^r b^{2r}$ where all you assume is that $k \le 3r$, how does this change the proof?

The Pumping Lemma for Regular Languages: If L is a language accepted by a DFA with k states, and $w \in L$, $|w| \ge k$, then there exists x, y, z such that

- 1. w = x y z,
- γ ≠ ε,
- 3. $|xy| \le k$, and
- 4. $x y^n z$ is in L for all $n \ge 0$.

Recipe for using the pumping lemma (proof by contradiction):

- 1.Assume L is regular and is accepted by a DFA M that has k states.
- 2. Choose w so that $w \in L$ and $|w| \ge k$.
- Find all factorizations of w as w=xyz such that |xy|≤ k and y is not the empty string.
- 4. For each factorization of w, find n so that when you pump n times to get x yⁿ z the resulting string is not in L. Make sure you look at the definition of L here and not just the pattern for w.

What machine M_2 would your construction from assignment 2 create as input for isEmpty given this machine M_1 and u=aaba:

Black box image from: http://socialcapitalmarkets.net/2013/04/03/whats-inside-the-socap13-black-box/⁶

regular expression	finite state machine	
a		Algorithms to Answer
a*		Questions about Regular
a+		Languages
a/b		if (if23==23)
(a/b)*c(d/e)		x= -23.2e23-6;
http://www.cgl.ucsf.edu/Outreach/bmi280/slides/swc/lec/re.html		7

The first step of a compiler is to break your program into tokens. Tokens:

- Keywords: if
- Brackets: ()
- Variables: if 23 x
- Assignment: =
- Math Operator: -

if (if23==23) x= -23.2e23-6;

Logical: ==

Delimiter: ;

Double:-23.2e23

Integers: 23 6

Keywords:

if U while U int U double U switch U Variables: Not a Keyword but of the form: (a-z U A-Z)(a-z U A-Z U 0-9 U _)* Non-negative Integers: N= (0 U (1-9)(0-9)*) Numeric values:

 $(\Phi^* \cup -) \cup N (\Phi^* \cup . (0-9)^*)$ $(\Phi^* \cup (e \cup E)(\Phi^* \cup + \cup -) N)$ The pumping lemma or closure properties can be used to prove languages are not regular.

Regular languages are closed under:

- union
- concatenation
- Kleene star
- complement
- intersection

- exclusive or
- difference
- reversal

There are algorithms for the following questions about regular languages:

- 1. Given a DFA M and a string w, is $w \in L(M)$?
- 2. Given a DFA M, is $L(M) = \Phi$?
- 3. Given a DFA M, is $L(M) = \Sigma^*$?
- 4. Given DFA's M_1 and M_2 , is $L(M_1) \subseteq L(M_2)$?
- 5. Given DFA's M_1 and M_2 , is $L(M_1) = L(M_2)$?

How can we use these to check correctness of student answers for the java tutorial?

Java Regular expression tutorial:

S= student answer, T= teacher answer

Strings student generates but should not. Is S intersect the complement of $T = \Phi$?

Java Regular expression tutorial:

S= student answer, T= teacher answer

Strings student should generate but does not. Is T intersect the complement of S = Φ ? The Pumping Lemma for Regular Languages:

- If L is a language accepted by a DFA with k states, and $w \in L$, $|w| \ge k$, then $\exists x, y, z$ such that
- 1. w = x y z,
- y ≠ ε,
- 3. $|xy| \le k$, and
- 4. $x y^n z$ is in L for all $n \ge 0$.

The pumping lemma is NOT strong enough to work directly to prove that certain languages are not regular.

- Let L be a language which has a constant k such that for all $w \in L$, $|w| \ge k$, $\exists x, y, z$ such that
- 1. w = x y z,This is necessary but2. $y \neq \varepsilon$,not sufficient for a3. $|xy| \le k$, andregular.
- 4. $x y^n z$ is in L for all $n \ge 0$.

Then you CANNOT conclude that L is regular.

Counterexample: See assignment 3.

 $L_1 = \{ u u^R v : u, v in \{0, 1\}^+ \}$