
1

Find as many examples as you can of w, x, y, z so
that w is accepted by this DFA, w = x y z,

y ≠ ε, | x y | ≤ 7, and x yn z is in L for all n ≥ 0.

2

You are in a maze of twisty little passages, all alike.

If the maze has n rooms and each one has trails exiting to
the N, S, W, E. How many trails must be traversed before
some room is visited more than once?

3

The Pigeonhole Principle

Given two natural
numbers n and m
with n > m, if n
items are put into
m pigeonholes,
then at least one
pigeonhole must
contain more than
one item.

Picture from: Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Image:Pigeons-in-holes.jpg

4

Proof of the Pumping Lemma

The pumping lemma is a statement about regular
languages used to show using a proof by
contradiction that languages are not regular.

The goal today is to prove it and show further
illustrations of how it can be used.

5

The Pumping Lemma for Regular Languages:

If L is a language accepted by a DFA with k

states, and w L, |w| ≥ k, then there exists

x, y, z such that

1. w = x y z,

2. y ≠ ε,

3. | x y | ≤ k, and

4. x yn z is in L for all n ≥ 0.

6

Proof. Consider w ∈ L, |w| ≥ k.

Isolate the first k symbols in w:

w= σ1 σ2 σ3 … σk-1 σk w’.

Consider the computation of M on w:

(q0, σ1 σ2 σ3 … σk-1 σk w’) ├

(q1, σ2 σ3 … σk-1 σk w’) ├

(q2, σ3 … σk-1 σk w’) ├ *

(qk-1, σk w’) ├ *

(qk, w’) ├ * (f, e) for some final state f.

7

After reading σ1 σ2 σ3 … σk-1 σk

k+1 states have been visited: q0, q1, q2, … qk.

The computation:

(q0, σ1 σ2 σ3 … σk-1 σk w’) ├

(q1, σ2 σ3 … σk-1 σk w’) ├

(q2, σ3 … σk-1 σk w’) ├ *

(qk-1, σk w’) ├ *

(qk, w’) ├ * (f, e) for some final state f.

By the pigeonhole principle, some state has been
repeated.

8

By the pigeonhole principle, some state has been
repeated. Suppose qi is the first time we see
the repeated state and qj is the second time.

Rewriting the computation:

(q0, σ1 σ2 σ3 … σi σi+1 … σj σj+1 … σk-1 σk w’) ├*

(qi, σi+1 … σj σj+1 … σk-1 σk w’) ├*

(qj, σj+1 … σk-1 σk w’) ├ * (f, e)

for some final state f.

9

Digression from Proof:

(q0, σ1 σ2 σ3 … σi σi+1 … σj σj+1 … σk-1 σk w’)├*

(qi, σi+1 … σj σj+1 … σk-1 σk w’) ├*

(qj, σj+1 … σk-1 σk w’) ├ * (f, e)

We can pump 0 times because:

(q0, σ1 σ2 σ3 … σi σj+1 … σk-1 σk w’) ├*

(qi = qj, σj+1 … σk-1 σk w’) ├ * (f, e)

10

Digression from Proof:

We can pump 2 times because:

(q0, σ1 σ2 σ3 … σi (σi+1 … σj)
2 σj+1 … σk w’) ├*

(qi, (σi+1 … σj)
2 σj+1 … σk w’) ├*

(qj= qi, (σi+1 … σj) σj+1 … σk w’) ├*

(qj, σj+1 … σk w’) ├ * (f, e)

11

Let x= σ1 σ2 σ3 … σi, y = σi+1 … σj , and

z= σj+1 … σk w’. The string x yn z is in L for all
values of n ≥ 0 since

(q0, σ1 σ2 σ3 … σi (σi+1 … σj)
n σj+1 … σk w’) ├*

(qj = qi, (σi+1 … σj)
n σj+1 … σk w’) ├*

(qj = qi, (σi+1 … σj)
n-1 σj+1 … σk w’) ├*

…

(qj= qi, (σi+1 … σj) σj+1 … σk w’) ├*

(qj, σj+1 … σk w’) ├ * (f, e) .

End of Proof.

12

The Pumping Lemma for Regular Languages:

If L is a language accepted by a DFA with k

states, and w L, |w| ≥ k, then there exists

x, y, z such that

1. w = x y z,

2. y ≠ ε,

3. | x y | ≤ k, and

4. x yn z is in L for all n ≥ 0.

13

L= { an b n : n ≥ 0 } is not a regular language.

Proof (by contradiction)

Assume L is regular.

Then L is accepted by a DFA M with k states
for some integer k.

Since L is accepted by a DFA M with k states,
the pumping lemma holds.

Let w = ar br where r = ⌈ k/2⌉ .

14

Consider all possibilities for y:

Case 1: ai (aj) ar-i-j br j ≥ 1.

Pump zero times: ar-j br ∉ L since r-j < r.

Case 2: ar bi (bj) br-i-j j ≥ 1.

Pump zero times: ar br-j ∉ L since r-j < r.

Case 3: ar-i (ai bj) br-j i, j ≥ 1.

Pump 2 times: ar-i ai bj ai bj br-j ∉ L
because it is not of the form a* b*

Therefore, L is not regular.

15

Using closure properties:

L= {w {a, b} * : w has the same number of
a’s as b’s} is not regular.

Proof (by contradiction)

Assume L is regular. The language a* b* is
regular since it has a regular expression.
Because regular languages are closed under
intersection, L ⋂ a* b* is regular. But

L ⋂ a* b* = { an b n : n ≥ 0} which is not
regular.

Therefore, L is not regular.

16

Problem of the Day (next class):

Factor (ab)k as xyz in all ways
such that y ≠ ε.

