$$
\begin{array}{ll}
L_{1}=\{\varepsilon, 0,1,00,01,10,11\} & L_{3}=\{ \}=\Phi \\
L_{2}=\{0\} & L_{4}=\{\varepsilon\}
\end{array}
$$

The alphabet is $\Sigma=\{0,1\}$.
What are the languages:

1. $\overline{L_{1}}$
2. $\mathrm{L}_{2} \cup \mathrm{~L}_{3}$
3. $\mathrm{L}_{2} \mathrm{UL}_{4}$
4. $\mathrm{L}_{1} \cdot \mathrm{~L}_{1}$
5. $\mathrm{L}_{3} \cdot \mathrm{~L}_{2}$
6. $\mathrm{L}_{1} \cap \mathrm{~L}_{3}$
7. $\mathrm{L}_{4} \cdot \mathrm{~L}_{2}$

CO-OP \&-CAREER

TECH CONNECT

MEET EMPLOYERS. MAKE CONNECTIONS.

Network with professionals | Find out what they do | Learn what employers look for when they hire FOR STUDENTS STUDYING ENGINEERING AND COMPUTER SCIENCE.

WHEN: TUESDAY, MAY 16, 4-6 P.M. WHERE: ENGINEERING \& COMPUTER SCIENCE BLD, RM 660

See who's attending at uvic.ca/coopandcareer/techconnect

CO-OP + CAREER
 Mock Interview Clinic

For engineering and computer science students

Practice your interview skills with a REAL co-op employer

Get immediate, on-the-spot feedback

Mock interviews will take place on Wednesday, May 31 from 9 a.m. -4:30 p.m. in the SUB Upper Lounge.

To register, visit learninginmotion.uvic.ca | Registration deadline: Friday, May 19.

Operations on Languages:

1. Complement of L defined over $\Sigma=\bar{L}$
$=\left\{w \in \Sigma^{*}: w\right.$ is not in $\left.L\right\}$
2. Concatenation of Languages $L_{1} \cdot L_{2}=L_{1} L_{2}=$
$\left\{w=x \cdot y\right.$ for some $x \in L_{1}$ and $\left.y \in L_{2}\right\}$
3. Kleene star of $L, L^{*}=\left\{w=w_{1} w_{2} w_{3} \ldots w_{k}\right.$ for some $k \geq 0$ and $w_{1}, w_{2}, w_{3}, \ldots, w_{k}$ are all in $\left.L\right\}$
4. $L^{+}=L \cdot L^{*}$
(Concatenate together one or more strings from L.)

Matrix multiplication:

Concatenation:
$a b \cdot b b=a b b b$
$b b \cdot a b=b b a b$

$$
\begin{array}{ll}
L_{1}=\{\varepsilon, 0,1,00,01,10,11\} & L_{3}=\{ \}=\Phi \\
L_{2}=\{0\} & L_{4}=\{\varepsilon\}
\end{array}
$$

What are the languages:

1. $\mathrm{L}_{1}{ }^{*}$
2. $\mathrm{L}_{2} \cdot\left(\mathrm{~L}_{1}{ }^{*}\right)$
3. $\mathrm{L}_{2}{ }^{*}$
4. $\left(L_{2} \cdot L_{1}\right)^{*}$
5. $\mathrm{L}_{3}{ }^{*}$
6. $\mathrm{L}_{2} \cdot\left(\mathrm{~L}_{1}{ }^{*}\right) \cdot \mathrm{L}_{2}$
7. $\mathrm{L}_{4}{ }^{*}$

Precedence of Operators

Exponents

highest
Multiplication

Addition

Concatenation

Union

$$
\begin{array}{ll}
L_{1}=\{\varepsilon, 0,1,00,01,10,11\} & L_{3}=\{ \}=\Phi \\
L_{2}=\{0\} & L_{4}=\{\varepsilon\}
\end{array}
$$

What are the languages:

1. $\mathrm{L}_{4} \mathrm{U}\left(\mathrm{L}_{3} \cdot \mathrm{~L}_{2}\right)$
2. $\left(\mathrm{L}_{4} \mathrm{U} \mathrm{L}_{3}\right) \cdot \mathrm{L}_{2}$

What does $\mathrm{L}_{4} \mathrm{U} \mathrm{L}_{3} \cdot \mathrm{~L}_{2}$ mean?
How is this interpreted (add parentheses)? $\{a\} \cdot\{b\} \cup\{a\} \cdot\{b\}^{*} \cdot\{a\}$
$L_{2}=\left\{w \in\{0,1\}^{*}: w\right.$ is the binary representation of a prime with no leading zeroes\}

The complement is:
$\left\{w \in\{0,1\}^{\star}: w\right.$ is the binary representation of a number which is not prime which has no leading O's or w starts with 0\}

Note: 1 is not prime or composite. The string 1 is in the complement since it is not in L.

Regular Languages over Alphabet Σ :
[Basis] 1. Φ and $\{\sigma\}$ for each $\sigma \in \Sigma$ are regular languages.
[Inductive step] If L_{1} and L_{2} are regular languages, then so are:
2. $L_{1} \cdot L_{2}$,
3. $L_{1} \cup L_{2}$, and
4. $L_{1}{ }^{*}$.

Regular Languages over Alphabet Σ :

[Basis] 1. Φ and $\{\sigma\}$ for each $\sigma \in \Sigma$ are regular languages.
[Inductive step] If L_{1} and L_{2} are regular languages, then so are:
2. $L_{1} \cdot L_{2}$,
3. $L_{1} \cup L_{2}$, and
4. $L_{1}{ }^{*}$.

Example:
$\left\{w \in\{a, b\}^{*}: w\right.$ contains
aab as a substring\}

Regular expressions over Σ :

[Basis] 1. Φ and σ for each $\sigma \in \Sigma$ are regular expressions.
[Inductive step] If α and β are regular expressions, then so are:
2. ($\alpha \beta$)
3. ($\alpha \cup \beta$) and
4. a^{\star}

Note: Regular expressions are strings over
$\Sigma \cup\left\{(),, \Phi, U,{ }^{*}\right\}$
for some alphabet Σ.

Prove the following languages over $\Sigma=\{0,1\}$ are regular by giving regular expressions for them:

1. $\{w: w$ has odd length\}
2. $\{w: w$ contains 0011$\}$
3. $\{w: w$ does not contain 01\}
4. $\{w: w$ starts and ends with the same symbol $(|w| \geq 1)\}$

TUTORIAL: $L=\left\{w\right.$ an element of $\{a, b\}^{*}: w$ has both baa and aaba as a substring \}.
$(a \mid b)^{\star} b a a(a \mid b)^{\star} a a b a(a \mid b)^{\star} \mid(a \mid b)^{\star} a a b a(a \mid b)^{\star} b a a(a \mid b)^{\star}$

Your Answer

| Your answer should generate the following strings but does not |
| :---: | :---: | :---: | :---: |
| aabaa, baaba, aaabaa, aabaaa, aabaab, abaaba, baaaba, baabaa, |
| baabab, bbaaba, aaaabaa, aaabaaa, aaabaab, aabaaaa, aabaaab, |
| aabaaba, aabaabb, abaaba, abaabaa, abaabab |

Lesson	Syntax	Hint	Answer
Previous Question	Next Question		Submit

MISSING: aabaa, baaba,

See home page for link to regular expression tutorial

