$L_{1} = \{\epsilon, 0, 1, 00, 01, 10, 11\} \qquad L_{3} = \{\} = \Phi$ $L_{2} = \{0\} \qquad L_{4} = \{\epsilon\}$

The alphabet is $\Sigma = \{0, 1\}$.

What are the languages: 1. $\overline{L_1}$ 2. $\overline{L_3}$ 3. $\overline{L_4}$ 4. $L_1 \cdot L_1$ 5. $L_3 \cdot L_2$ 6. $L_4 \cdot L_2$

7. $L_2 \cup L_3$ 8. $L_2 \cup L_4$ 9. $L_1 \cap L_3$ 10. $L_1 \cap L_4$

CO-OP - CAREER

TECH CONNECT

MEET EMPLOYERS. MAKE CONNECTIONS.

Network with professionals | Find out what they do | Learn what employers look for when they hire

FOR STUDENTS STUDYING ENGINEERING AND COMPUTER SCIENCE.

WHEN: TUESDAY, MAY 16, 4 – 6 P.M. WHERE: ENGINEERING & COMPUTER SCIENCE BLD, RM 660

See who's attending at uvic.ca/coopandcareer/techconnect

CO-OP+CAREER Mock Interview Clinic

For engineering and computer science students

Practice your interview skills with a REAL co-op employer

Get immediate, on-the-spot feedback

Mock interviews will take place on Wednesday, May 31 from 9 a.m. – 4:30 p.m. in the SUB Upper Lounge.

To register, visit learninginmotion.uvic.ca | Registration deadline: Friday, May 19.

Operations on Languages:

1. Complement of L defined over $\Sigma = L^{-1}$

= {
$$w \in \Sigma^*$$
: w is not in L }

- 2. Concatenation of Languages $L_1 \cdot L_2 = L_1 L_2 =$ {w= x·y for some x $\in L_1$ and y $\in L_2$ }
- 3. Kleene star of L, $L^* = \{ w = w_1 w_2 w_3 \dots w_k \text{ for some } k \ge 0 \text{ and } w_1, w_2, w_3, \dots, w_k \text{ are all in } L \}$

4. L⁺ = L · L*

(Concatenate together one or more strings from L.)

Matrix multiplication:

Concatenation:

- ab · bb = abbb
- bb · ab = bbab

What are the languages:

 1. $L_1 *$ 5. $L_2 \cdot (L_1 *)$

 2. $L_2 *$ 6. $(L_2 \cdot L_1) *$

 3. $L_3 *$ 7. $L_2 \cdot (L_1 *) \cdot L_2$

4. L₄ *

What does $L_2 \cdot L_1^*$ mean?

Precedence of Operators

ExponentshighestKleene starMultiplicationIConcatenationAdditionlowestUnion

 $L_{1} = \{\epsilon, 0, 1, 00, 01, 10, 11\} \qquad L_{3} = \{\} = \Phi$ $L_{2} = \{0\} \qquad \qquad L_{4} = \{\epsilon\}$

What are the languages:

1. $L_4 \cup (L_3 \cdot L_2)$

2. $(L_4 \cup L_3) \cdot L_2$

What does $L_4 \cup L_3 \cdot L_2$ mean?

How is this interpreted (add parentheses)? $\{a\} \cdot \{b\} \cup \{a\} \cdot \{b\}^* \cdot \{a\}$

 L_2 = {w \in {0,1}* : w is the binary representation of a prime with no leading zeroes}

The complement is:

 $\{w \in \{0,1\}^* : w \text{ is the binary representation of a number which is not prime which has no leading 0's or w starts with 0}$

Note: 1 is not prime or composite. The string 1 is in the complement since it is not in L.

Regular Languages over Alphabet Σ : [Basis] 1. Φ and { σ } for each $\sigma \in \Sigma$ are regular languages.

[Inductive step] If L_1 and L_2 are regular languages, then so are:

2. $L_1 \cdot L_2$,

3. $L_1 \cup L_2$, and

4. L₁*.

Regular Languages over Alphabet Σ : [Basis] 1. Φ and { σ } for each $\sigma \in \Sigma$ are regular languages.

[Inductive step] If L_1 and L_2 are regular languages, then so are:

2. $L_1 \cdot L_2$, 3. $L_1 \cup L_2$, and 4. L_1^* .

Example: {w ∈ {a, b}* : w contains aab as a substring} Regular expressions over Σ :

[Basis] 1. Φ and σ for each $\sigma \in \Sigma$ are regular expressions.

[Inductive step] If a and β are regular expressions, then so are:

2. (αβ)

3. ($a \cup \beta$) and

4. α^{*}

Note: Regular expressions are strings over

 $\Sigma \cup \{ (,), \Phi, \cup, * \}$

for some alphabet Σ .

- Prove the following languages over Σ={0,1} are regular by giving regular expressions for them:
- 1. {w: w has odd length}
- 2. {w: w contains 0011}
- 3. {w: w does not contain 01}
- 4. {w: w starts and ends with the same symbol ($|w| \ge 1$)}

TUTORIAL: L = { w an element of $\{a,b\}^*$: w has both baa and aaba as a substring }.

(a|b)*baa(a|b)*aaba(a|b)*|(a|b)*aaba(a|b)*baa(a|b)*

L = (w an element of $(a,b)^*$: w has both baa and aaba as a substring). Give a regular expression for L.			
7			×
Your Answer (a b)*baa(a b)*aaba(a b)*(a b)*aaba(a b)*baa(a b)*			
Your answer should generate the following strings but does not aabaa, baaba, aaabaa, aabaaa, aabaab, abaaba, baaaba, baabaa, baabab, bbaaba, aaaabaa, aaabaaa, aaabaaab			
Lesson	Syntax	Hint	Answer
Previous Question	Next Question	Submit	

MISSING: aabaa, baaba,

...

See home page for link to regular expression tutorial