CSC 320 Midterm Exam

June 23, 2010

Instructions:

1. Put your name on every page of the exam.
2. No calculators or other aids. Closed book.
3. Read through the entire exam before beginning. You should have 7 pages including this header page.

Question	Value	Mark
1	30	
2	25	
3	25	
4	20	
Total	$\mathbf{1 0 0}$	

Name: \qquad

ID Number:
1.(a) [10 marks] Prove that the language
$L=\left\{w \in\{0,1\}^{*}: w\right.$ has 01 as a prefix and 10 as a suffix $\}$
is regular by designing a DFA which accepts L.
(b) [10 marks] Prove that the language
$L=\left\{w \in\{a, b\}^{*}: w\right.$ contains both $a b a$ and $b a a b$ as substrings $\}$ is regular by giving a regular expression which generates L.
(c) [10 marks] Design a context-free grammar which generates the language $L=\left\{c^{r} w c^{s} w^{R} c^{t}: w \in\{a, b\}^{*}, r, t \geq 1\right.$ and $\left.s \geq 0\right\}$.
2. [25 marks] Use the construction described in class (which is the same as the one in the text) to convert this NDFA to an equivalent DFA:

State	Symbol	Q	Next state

Start state: \qquad
Final states:
A picture of your final DFA:
3.(a) [5 marks] State the pumping lemma for regular languages.
(b) [5 marks] Let $w=a^{r} b a^{r}$. Describe all possible ways of choosing x, y, z such that $w=x y z$, and $y \neq \varepsilon$.
(c) $[10$ marks $]$ Apply the pumping lemma to $w=a^{r} b a^{r}$ to prove that $L=\left\{a^{n} b a^{m}: n \leq m \leq 8 n\right\}$ is not accepted by a DFA with $2 r+1$ states.
(d) [5 marks] A more judicious choice for w would have made the argument for (c) much simpler. Suggest a better choice for w. How does this simplify the argument you gave for (c)?
4. Circle True or False and justify your answer. No marks will be given unless there is a correct justification.
(a) [5 marks] It is possible to find a language L that satifies conditions of the pumping lemma but L is not regular.
True False
(b) [5 marks] Solving (finding a match) a correspondance system over the alphabet $\{a, b\}$ is easier than trying to solve a correspondance system defined over the alphabet $\{a, b, c, d\}$. True

False
(c) [5 marks] The language L^{*} is an infinite language for all languages L. True

False
(d) [5 marks] Given a graph G, if $G-v$ has a Hamilton path for all vertices v, then G has a Hamilton cycle.
True False

Use this page if you need more space.
Clearly indicate the question you are answering.

