CSC 320 Midterm Exam

June 19, 1998

1. [20 marks] Use the construction described in class (which is the same as the one in the text) to convert this NDFA to an equivalent DFA:

State	Symbol		Next state

Start state:

Final states:

A picture of your final DFA:

2. Circle **True** or **False** and justify your answer. **No marks will be given unless there** is a correct justification.

- (a) [5 marks] The set {L : L is a regular language over Σ= {a, b, c}} is countable.
 True False
- (b) [5 marks] Every subset of a regular language is regular. True False
- (c) [5 marks] Regular languages are closed under difference.True False
- 3. [20 marks] Define $L_1 = \{w \in \{0, 1\}^* : w \text{ ends with } 0\}$. Define $L_2 = \{w \in \{0, 1\}^* : \text{ the number of } 1's \text{ in } w \text{ is not divisible by } 3\}$. Design a **DFA** for the strings in $L_1 \cup L_2$.
- 4. [20 marks] Give a context-free grammar for $L = \{a^n b^m c^{n+m} : n, m \ge 0\}$.
- 5.(a) [10 marks] State precisely the pumping lemma for regular languages.
- (b) [15 marks] Apply the pumping lemma to $w = a^k b c^{k^2}$. to prove that $L = \{a^n b c^p : n \le p \le n^3\}$ is not accepted by a DFA with k states.