CSC 320 Midterm Exam

June 19, 1998

1. [20 marks] Use the construction described in class (which is the same as the one in the text) to convert this NDFA to an equivalent DFA:

State	Symbol			Next state

Start state: \qquad
Final states: \qquad
A picture of your final DFA:
2. Circle True or False and justify your answer. No marks will be given unless there is a correct justification.
(a) [5 marks] The set $\{L: L$ is a regular language over $\Sigma=\{a, b, c\}\}$ is countable.
True False
(b) [5 marks] Every subset of a regular language is regular.

True
False
(c) [5 marks] Regular languages are closed under difference.

True
False
3. [20 marks] Define $L_{1}=\left\{w \in\{0,1\}^{*}: w\right.$ ends with 0$\}$.

Define $L_{2}=\left\{w \in\{0,1\}^{*}\right.$: the number of $1^{\prime} s$ in w is not divisible by 3$\}$.
Design a DFA for the strings in $L_{1} \cup L_{2}$.
4. [20 marks] Give a context-free grammar for $L=\left\{a^{n} b^{m} c^{n+m}: n, m \geq 0\right\}$.
5.(a) [10 marks] State precisely the pumping lemma for regular languages.
(b) $[15$ marks $]$ Apply the pumping lemma to $w=a^{k} b c^{k^{2}}$. to prove that $L=\left\{a^{n} b c^{p}: n \leq p \leq n^{3}\right\}$ is not accepted by a DFA with k states.

