1. For parts (a), (b), (c) and (d) below, you must choose four DIFFERENT languages from the six given here and are required to find a regular expression, a context-free grammar, a DFA, and a PDA for them respectively. Choose carefully to minimize your effort.

The six languages to choose from:

 $L_{1} = \{a^{p} : p \text{ is prime }\}.$ $L_{2} = \{w \in \{a, b\}^{*} : \text{ the number of } a\text{'s in } w \text{ is equal to the number of } b\text{'s in } w \}.$ $L_{3} = \{w \in \{a, b\}^{*} : \text{ the number of } a\text{'s in } w \text{ is congruent to the number of } b\text{'s in } w \text{ modulo } 2\}.$ $L_{4} = \{w \in \{a, b, c\}^{*} : w = a^{n} b^{n} c^{n}, n \ge 0\}.$ $L_{5} = \{w \in \{a, b\}^{*} : w \text{ contains } aaba \text{ and } ababb \}.$ $L_{6} = \{u \in \{a, b\}^{*} : w = w^{R}\}.$

Fill in your choices for each part:

Part	Requirement	Language chosen
(a)	Regular Expression	
(b)	Context-free Grammar	
(c)	Deterministic Finite Automaton	
(d)	Pushdown Automaton	

- (a) [10 marks] Give a regular expression for one of the languages.
- (b) [10 marks] Give a context-free grammar for one of the languages.
- (c) [10 marks] Draw the transition diagram of a DFA for one of the languages (include comments).
- (d) [10 marks] Describe a PDA for one of the languages (include comments).
- 2.(a) [10 marks] State the pumping lemma for regular languages (as presented in class, the "beginning of the string" pumping lemma).
- (b) [10 marks] Let $w = a^k b a^{k^2}$. Describe all possible ways of choosing x, y, z such that w = xyz, and $y \neq \varepsilon$.
- (c) [10 marks] Apply the pumping lemma to $w = a^k b a^{k^2}$ to prove that $L = \{a^n b a^m : n^2 \le m \le n^3\}$ is not accepted by a DFA with $k^2 + k + 1$ states.

- (d) [10 marks] A more judicious choice for w would have made the argument for (c) much simpler. Suggest a better choice for w. How does this simplify the argument you gave for (c)?
- 3. Circle **True** or **False** and justify your answer. **No marks will be given unless** there is a correct justification.
 - (a) [7 marks] $L = \{a\}^*$ is countable. True False
 - (b) [7 marks] Every subset of a regular language is regular. True False
 - (c) [7 marks] If $x \notin L_1$ and $y \notin L_2$ then $xy \notin L_1 \cdot L_2$. True False