1. For parts (a), (b), (c) and (d) below, you must choose four DIFFERENT languages from the six given here and are required to find a regular expression, a context-free grammar, a DFA, and a PDA for them respectively. Choose carefully to minimize your effort.

The six languages to choose from:
$L_{1}=\left\{a^{p}: p\right.$ is prime $\}$.
$L_{2}=\left\{w \in\{a, b\}^{*}:\right.$ the number of a 's in w is equal to the number of b 's in $w\}$.
$L_{3}=\left\{w \in\{a, b\}^{*}:\right.$ the number of a 's in w is congruent to the number of b 's in w modulo 2$\}$.

$$
\begin{aligned}
& L_{4}=\left\{w \in\{a, b, c\}^{*}: w=a^{n} b^{n} c^{n}, n \geq 0\right\} . \\
& L_{5}=\left\{w \in\{a, b\}^{*}: w \text { contains } a a b a \text { and } a b a b b\right\} . \\
& L_{6}=\left\{u \in\{a, b\}^{*}: w=w^{R}\right\} .
\end{aligned}
$$

Fill in your choices for each part:

Part	Requirement	Language chosen
(a)	Regular Expression	
(b)	Context-free Grammar	
(c)	Deterministic Finite Automaton	
(d)	Pushdown Automaton	

(a) [10 marks] Give a regular expression for one of the languages.
(b) [10 marks] Give a context-free grammar for one of the languages.
(c) [10 marks] Draw the transition diagram of a DFA for one of the languages (include comments).
(d) [10 marks] Describe a PDA for one of the languages (include comments).
2.(a) [10 marks] State the pumping lemma for regular languages (as presented in class, the 'beginning of the string'' pumping lemma).
(b) [10 marks] Let $w=a^{k} b a^{k^{2}}$. Describe all possible ways of choosing x, y, z such that $w=x y z$, and $y \neq \varepsilon$.
(c) $[10$ marks $]$ Apply the pumping lemma to $w=a^{k} b a^{k^{2}}$ to prove that $L=\left\{a^{n} b a^{m}: n^{2} \leq m \leq n^{3}\right\}$ is not accepted by a DFA with $k^{2}+k+1$ states.
(d) [10 marks] A more judicious choice for w would have made the argument for (c) much simpler. Suggest a better choice for w. How does this simplify the argument you gave for (c)?
3. Circle True or False and justify your answer. No marks will be given unless there is a correct justification.
(a) $[7$ marks $] L=\{a\}^{*}$ is countable.

True
False
(b) [7 marks] Every subset of a regular language is regular. True

False
(c) [7 marks] If $x \notin L_{1}$ and $y \notin L_{2}$ then $x y \notin L_{1} \cdot L_{2}$. True

False

