1.(a) State the pumping lemma for regular languages.
(b) Let $w=a^{k} b a^{k^{2}}$. Describe all possible ways of choosing x, y, z such that $w=x y z$, and $y \neq \varepsilon$.
(c) Apply the pumping lemma to $w=a^{k} b a^{k^{2}}$ to prove that $L=\left\{a^{n} b a^{m}: n^{2} \leq m \leq n^{3}\right\}$ is not accepted by a DFA with $k^{2}+k+1$ states.
(d) A more judicious choice for w would have made the argument for (c) much simpler. Suggest a better choice for w. How does this simplify the argument you gave for (c)?
2. Use the algorithm described in class (or in the text) to create a DFA equivalent to the FA with start state s_{1} and transitions:

State	String	Next state
s_{1}	ε	s_{3}
s_{1}	bb	s_{4}
s_{2}	a	s_{1}
s_{3}	a	s_{2}
s_{3}	ε	s_{2}
s_{4}	ε	s_{3}

The set of final states includes only s_{2}.
3.(a) Give a context-free grammar for $L_{1}=\left\{a^{n} b a^{n} b a^{k}: n, k \geq 0\right\}$.
(b) Design a PDA for $L_{2}=\left\{a^{n} b a^{k} b a^{n}: n, k \geq 0\right\}$.
(c) Given that $L_{3}=\left\{a^{n} b a^{n} b a^{n}: n \geq 0\right\}$ is not a context-free language, what can you say about closure of context-free languages under intersection?

