CSC 320 Midterm: Oct. 26, 1988

This midterm should take at most 50 minutes to complete, closed book.

1. Consider the following classes of languages:
(a) finite
(b) regular
(c) context-free
(d) none of the above

For each of the following languages, select the class from the above list such that L is in the class you choose, but is not in the previous class on the list.

Example:

$L=\left\{a^{n} b^{n}\right\} \quad$ The correct answer is (c) since L is context-free, but is not regular.
$L=\left\{w c w c w: w \in\{a, b\}^{*}\right\}$
$L L=\left\{w w^{R}: w \in\{a, b\}^{*}\right\}$
$\ldots \quad L=a^{*} b^{*} \cap\left\{w \in\{a, b\}^{*}: w\right.$ has the same number of a 's and b 's\}
$L=\left\{w \in\{0,1\}^{*}: w\right.$ is the decimal notation for $\left.10^{i}, i \geq 0\right\}$
$\ldots L=\left\{w \in\{a\}^{*}:|w|\right.$ is congruent to $\left.1 \operatorname{or} 2 \bmod 8\right\}$
$\ldots \quad L=(\phi)(a \cup b)^{*}$
$L \quad L=\left\{w w^{R}: w \in\{a\}^{*}\right\}$
$\ldots \quad L=$ The complement of $(a a \cup b b)^{*}(a \cup b)^{*}$
$\ldots \quad L=\{w: w$ is the name of a student writing this exam $\}$
$\ldots=\left\{a^{n^{2}}: n \geq 0\right\}$
2. Given that a language L is accepted by a DFA with four states and $a a a b \in L$:
(a) Give regular expressions for seven infinite languages $L_{1}, L_{2}, \cdots L_{7}$ such that $L_{i} \subseteq L$ for at least one value of i.
(b) Prove that L from part (a) is an infinite language.
(c) State what the pumping lemma says about a language accepted by a DFA with four states. What needs to be true in order for you to prove that a language L is NOT accepted by a DFA with four states?
3. (a) Define a context-free grammar.
(b) Give a context-free grammar for $L=\left\{a^{m} c^{n} b^{p}: m \leq p\right\}$.
(c) Use the grammar from part (b) and the construction described in class (or in the text) to create a PDA which accepts L.

