Name:

ID Number:

\qquad

CSC 320 Midterm Exam

Wed. June 27, 2012

Instructions:

1. Put your name on every page of the exam.
2. No calculators or other aids. Closed book.
3. Read through the entire exam before beginning. You should have 8 pages including this header page.
4. If you need more space you can write on the backs of the pages.

Question	Value	Mark
1	40	
2	20	
3	20	
4	20	
Total	$\mathbf{1 0 0}$	

1. For parts (a), (b), (c) and (d) below, you must choose four DIFFERENT languages from the five given here and are required to find a regular expression, a context-free grammar, a DFA, and a PDA for them respectively. Choose carefully to minimize your effort.
$L_{1}=\left\{a^{p} b^{q} c^{r} d^{s}:(p+q)=(r+s), \quad p, q, r, s \geq 0\right\}$
$L_{2}=\left\{w \in\{0,1\}^{*}: w\right.$ has both 0101 and 0110 as substrings $\}$
$L_{3}=\left\{w \in\{a, b\}^{*}: w\right.$ has aab as a prefix and baa as a suffix $\}$
$L_{4}=\left\{a^{p} c^{q} a^{r}: p \neq q, p \neq r, q \neq r\right.$, and $\left.p, q, r \geq 0\right\}$
$L_{5}=\left\{w \in\left\{\phi,{ }^{*}, a, b,(,), \cup\right\}^{*}: w\right.$ represents a regular expression as given by the formal definition of a regular expression \}
Fill in your choices for each part:

Part	Requirement	Language chosen
(a)	Regular Expression	
(b)	Context-free Grammar	
(c)	Deterministic Finite Automaton	
(d)	Pushdown Automata	

(a) [10 marks] Give a regular expression for one of the languages. Your choice of language is:
(b) [10 marks] Give a context-free grammar for one of the languages. Your choice of language is:
[Question \#1, continued]
(c) [10 marks] Draw the transition diagram of a DFA for one of the languages (include comments). Your choice of language is:
(d) [10 marks] Design a PDA which accepts one of the languages. Your choice of language is:
Start state:
Final states:

State	Read	Pop	Next State	Push

2. [20 marks] Use the construction described in class (which is the same as the one in the text) to convert this NDFA to an equivalent DFA:

State	Symbol	Q	Next state

Start state: \qquad
Final states: \qquad
A picture of your final DFA:
-5-
3. Let $L=\left\{(a b)^{n} c^{m}: n \leq m \leq 3 n\right.$ and $\left.n, m \geq 0\right\}$. A proof that L is not regular starts by assuming that L is accepted by some DFA M that has k states.
Let $w=(a b)^{p} c^{2 p}$ where p has been chosen such that $2 p \geq k$.
(a) [8 marks] Describe all possible ways of choosing x, y, z such that $w=x y z$, $|x y| \leq k$ and $y \neq \varepsilon$. Use as many cases as you need.

Case	x	y		z
1				Conditions
2				
3				
4				
5				
6				
7				

(b) [4 marks] For which cases from part (a) can you finish the proof of this case by pumping 0 times? Show the resulting string for each of these cases and explain why it is not in L.

[Question \#3, continued]

For this question:

$$
\begin{aligned}
& L=\left\{(a b)^{n} c^{m}: n \leq m \leq 3 n \text { and } n, m \geq 0\right\} \\
& w=(a b)^{p} c^{2 p} \text { where } 2 p \geq k
\end{aligned}
$$

(c) [8 marks] Finish the proof for the cases from (a) that cannot be completed by pumping 0 times.
4. Circle True or False and justify your answer. No marks will be given unless there is a correct justification.
(a) [5 marks] If $x \notin L_{1}$ and $y \notin L_{2}$ then $x \cdot y \notin L_{1} \cdot L_{2}$. True False
(b) [5 marks] A regular language can contain a subset which is not a regular language. True False
(c) [5 marks] The set ϕ^{*} does not contain any strings. True
False
(d) [5 marks] If $L=\left\{w \in\{a, b\}^{*}: w=a^{n} b^{n}, n \geq 0\right\}$, then $\bar{L}=\left\{w \in\{a, b\}^{*}: w=a^{n} b^{m}, n>m\right\}$
$\cup\left\{w \in\{a, b\}^{*}: w=a^{n} b^{m}, n<m\right\}$.
True
False
-8-
Use this page if you need more space.
Clearly indicate the question you are answering.

