Name: _____

ID Number:_____

CSC 320 Midterm Exam

Wed. Oct. 26, 2011

Instructions:

- 1. Put your name on every page of the exam.
- 2. No calculators or other aids. Closed book.
- 3. Read through the entire exam before beginning. You should have 9 pages including this header page.
- 4. If you need more space you can write on the backs of the pages.

Question	Value	Mark
1	40	
2	20	
3	25	
4	15	
Total	100	

1. For parts (a), (b), (c) and (d) below, you must choose four DIFFERENT languages from the five given here and are required to find a regular expression, a context-free grammar, a DFA, and a PDA for them respectively. Choose carefully to minimize your effort.

 $L_{1} = \{ww : w \in \{a, b\}^{*}\}$ $L_{2} = \{w \in \{0, 1\}^{*} : w \text{ contains } 01001\}$ $L_{3} = \{a^{p} b^{q} c^{r} d^{s} : (p+q) = (r+s), p, q, r, s \ge 0\}$ $L_{4} = \{uu^{R} vv^{R} : u \in \{0, 1\}^{*}, v \in \{0, 1\}^{+}\}$ $L_{5} = \{w \in \{a, b\}^{*} : w \text{ has both } abba \text{ and } baab \text{ as substrings}\}$ Fill in your choices for each part:

Part	Requirement	Language chosen
(a)	Regular Expression	
(b)	Context-free Grammar	
(c)	Deterministic Finite Automaton	
(d)	Pushdown Automata	

(a) [10 marks] Give a regular expression for one of the languages.

(b) [10 marks] Give a context-free grammar for one of the languages.

[Question #1, continued]

(c) [10 marks] Draw the transition diagram of a DFA for one of the languages (include comments).

(d) [10 marks] Design a PDA which accepts one of the languages:

Final states:

State	Read	Рор	Next State	Push

2. [20 marks] Use the construction described in class (which is the same as the one in the text) to convert this NDFA to an equivalent DFA:

State	Symbol	Q	Next state

Start state: _____

Final states: _____

A picture of your final DFA:

3.(a) [5 marks] State the pumping lemma for regular languages.

(b) [5 marks] Let $w = a^n b c^{2n}$. Describe all possible ways of choosing x, y, z such that w = x y z, and $y \neq \varepsilon$.

(c) [10 marks] Apply the pumping lemma to $w = a^n b c^{2n}$ to prove that $L = \{a^r b c^s : r \le s \le 2r\}$ is not accepted by a DFA with 3n + 1 states.

(d) [5 marks] A more judicious choice for *w* would have made the argument for (c) much simpler. Suggest a better choice for *w*. How does this simplify the argument you gave for (c)?

- 4. Suppose you are given a boolean function IsEmpty(M): Input: A DFA *M* Returns: *true* if $L(M) = \phi$ and *false* otherwise.
- (a) [9 marks] Describe a construction which given a DFA $M_1 = (K_1, \Sigma, \delta_1, s_1, F_1)$ yields a DFA $M_2 = (K_2, \Sigma, \delta_2, s_2, F_2)$ so that if you call isEmpty(M_2) it returns the answer to the question: "Does M_1 accept any strings which start with 101?"

[Question 4, continued]

The Question from part (a) is: "Does M_1 accept any strings which start with 101?"

(b) [6 marks] Show how to apply your construction from part (a) to this DFA M_1 and draw a picure of the resulting DFA M_2 .

Start state: *s* Final states: { *s*, *u* }

State	Symbol	Next State
S	0	t
S	1	S
S	2	u
t	0	u
t	1	t
t	2	S
u	0	S
u	1	u
u	2	t

Use this page if you need more space.

Clearly indicate the question you are answering.