Name: \qquad

ID Number:

\qquad

CSC 320 Midterm Exam

Wed. Oct. 26, 2011

Instructions:

1. Put your name on every page of the exam.
2. No calculators or other aids. Closed book.
3. Read through the entire exam before beginning. You should have 9 pages including this header page.
4. If you need more space you can write on the backs of the pages.

Question	Value	Mark
1	40	
2	20	
3	25	
4	15	
Total	$\mathbf{1 0 0}$	

1. For parts (a), (b), (c) and (d) below, you must choose four DIFFERENT languages from the five given here and are required to find a regular expression, a context-free grammar, a DFA, and a PDA for them respectively. Choose carefully to minimize your effort.
$L_{1}=\left\{w w: w \in\{a, b\}^{*}\right\}$
$L_{2}=\left\{w \in\{0,1\}^{*}: w\right.$ contains 01001$\}$
$L_{3}=\left\{a^{p} b^{q} c^{r} d^{s}:(p+q)=(r+s), \quad p, q, r, s \geq 0\right\}$
$L_{4}=\left\{u u^{R} v v^{R}: u \in\{0,1\}^{*}, v \in\{0,1\}^{+}\right\}$
$L_{5}=\left\{w \in\{a, b\}^{*}: w\right.$ has both $a b b a$ and baab as substrings $\}$
Fill in your choices for each part:

Part	Requirement	Language chosen
(a)	Regular Expression	
(b)	Context-free Grammar	
(c)	Deterministic Finite Automaton	
(d)	Pushdown Automata	

(a) [10 marks] Give a regular expression for one of the languages.
(b) [10 marks] Give a context-free grammar for one of the languages.
[Question \#1, continued]
(c) [10 marks] Draw the transition diagram of a DFA for one of the languages (include comments).
(d) [10 marks] Design a PDA which accepts one of the languages:

Start state:
Final states:

State	Read	Pop	Next State	Push

-4-
2. [20 marks] Use the construction described in class (which is the same as the one in the text) to convert this NDFA to an equivalent DFA:

State	Symbol	Q	Next state

Start state: \qquad
Final states: \qquad
A picture of your final DFA:
3.(a) [5 marks] State the pumping lemma for regular languages.
(b) [5 marks] Let $w=a^{n} b c^{2 n}$. Describe all possible ways of choosing x, y, z such that $w=x y z$, and $y \neq \varepsilon$.
(c) $[10$ marks $]$ Apply the pumping lemma to $w=a^{n} b c^{2 n}$ to prove that $L=\left\{a^{r} b c^{s}: r \leq s \leq 2 r\right\}$ is not accepted by a DFA with $3 n+1$ states.
(d) [5 marks] A more judicious choice for w would have made the argument for (c) much simpler. Suggest a better choice for w. How does this simplify the argument you gave for (c)?
4. Suppose you are given a boolean function $\operatorname{IsEmpty}(M)$:

Input: A DFA M
Returns: true if $L(M)=\phi$ and false otherwise.
(a) [9 marks] Describe a construction which given a DFA $M_{1}=\left(K_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ yields a DFA $M_{2}=\left(K_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$ so that if you call isEmpty $\left(M_{2}\right)$ it returns the answer to the question: "Does M_{1} accept any strings which start with 101 ?"
[Question 4, continued]
The Question from part (a) is: "Does M_{1} accept any strings which start with 101 ?"
(b) [6 marks] Show how to apply your construction from part (a) to this DFA M_{1} and draw a picure of the resulting DFA M_{2}.
Start state: s
Final states: $\{s, u\}$

State	Symbol	Next State
s	0	t
s	1	s
s	2	u
t	0	u
t	1	t
t	2	s
u	0	s
u	1	u
u	2	t

-9-
Use this page if you need more space.
Clearly indicate the question you are answering.

