CSC 320 Midterm Exam

June 20, 2008

Instructions:

1. Put your name on every page of the exam.
2. No calculators or other aids. Closed book.
3. Read through the entire exam before beginning. You should have 7 pages including this header page.

Question	Value	Mark
1	30	
2	25	
3	25	
4	20	
Total	$\mathbf{1 0 0}$	

Name: \qquad

ID Number:
1.(a) [10 marks] Prove that the language
$L=\left\{w \in\{0,1\}^{*}: w\right.$ has 01 as a prefix and 10 as a suffix $\}$
is regular by designing a DFA which accepts L.
(b) [10 marks] Prove that the language
$L=\left\{w \in\{a, b\}^{*}: w\right.$ contains both $a a b$ and $a b a$ as substrings $\}$ is regular by giving a regular expression which generates L.
(c) [10 marks] Design a nondeterministic finite automaton which accepts $L=(01 \cup 011 \cup 00)^{*} 011$
2. [25 marks] Use the construction described in class (which is the same as the one in the text) to convert this NDFA to an equivalent DFA:

State	Symbol	Q	Next state

Start state: \qquad
Final states: \qquad
A picture of your final DFA:
3.(a) [5 marks] State the pumping lemma for regular languages.
(b) [5 marks] Let $w=a^{r} b a^{3 r}$. Describe all possible ways of choosing x, y, z such that $w=x y z$, and $y \neq \varepsilon$.
(c) $[10$ marks $]$ Apply the pumping lemma to $w=a^{r} b a^{3 r}$ to prove that $L=\left\{a^{n} b a^{m}: n \leq m \leq 3 n\right\}$ is not accepted by a DFA with $4 r+1$ states.
(d) [5 marks] A more judicious choice for w would have made the argument for (c) much simpler. Suggest a better choice for w. How does this simplify the argument you gave for (c)?
4. Circle True or False and justify your answer. No marks will be given unless there is a correct justification.
(a) [5 marks] If $x \notin L_{1}$ and $y \notin L_{2}$ then $x y \notin L_{1} L_{2}$. True

False
(b) [5 marks] A regular language can contain a subset which is not a regular language. True

False
(c) [5 marks] The set ϕ^{*} does not contain any strings. True

False
(d) [5 marks] The language $L=\left\{u u^{R} v: u, v \in\{a, b\}^{+}\right\}$is regular because for any string w of length at least four, w can be factored as $x y z$ where $|x y|$ is at most four and $x y^{n} z$ is in L for all $n \geq 0$.

True
False

Use this page if you need more space.
Clearly indicate the question you are answering.

