CSC 320 - Final Examination Fall 1997

- 1. [20] For each of the following languages, indicate the most restrictive of the classes below into which it falls:
 - (a) finite
 - (b) regular
 - (c) context-free
 - (d) Turing-decidable
 - (e) Turing-acceptable
 - (f) None of the above.

Example:

 $L = \{ a^n b^n : n \ge 0 \}$ The correct answer is (c) since L is context-free, but is not regular.

In this question, we will use $\rho(M)$ to denote the encoding of a Turing Machine M and $\rho(w)$ to denote the encoding of the string w. Assume that the encoding scheme used is as described in class and in the text.

_____i) { strings in $\{a, b\}^*$ with an odd number of a's and and even number of b's }

$$\underline{\qquad iii) \quad L = the complement of \{ a^n b^n : n \ge 0 \}$$

iv) {
$$w w^R u u^R : u, w \in \{a, b\}^*$$
 }

_____v) { $w w : w \in \{a, b\}^*$ }

- _____vi) $L = \{ w \in \{0,1\}^* : w \text{ does not contain } 0 \ 1 \ 0 \ 1 \ 1 \text{ as a substring } \}$
- _____ vii) { $\rho(M) \rho(w)$: TM M accepts a regular language }
- _____ viii) { a^p : p is a prime number }
- _____ix) $L = the complement of \{ a^n b^n c^n : n \ge 0 \}$

- _____ xii) { strings in {a, b}^{*} which do not have aa, ab, ba or bb as a substring }
- $\underline{\qquad}$ xiii) { $\rho(M)$: M writes a nonblank symbol when started on a blank tape }
- \max xiv) { $\rho(M) \rho(a)$: TM M prints the symbol a when started on a blank tape }
- $(M) \rho(a) : TM M$ has at least one transition on the symbol a
- $\underline{\qquad}$ xvi) { $\rho(M_1) \ \rho(M_2) \ \rho(w)$: both M_1 and M_2 accept input w }
- $(M) \rho(w) : M \text{ is a TM, } w \text{ is an input string }$
- $\underline{\qquad}$ xviii) { $\rho(M) \rho(w) : TM M \text{ does not accept input } w$ }
- $\underline{\qquad}$ xix) { $\rho(M)$: M halts on every string }
- (M) ($\rho(M)$) : there is some string on which M halts }
- 2. [12] Are the following languages closed under the given operations? Fill in the chart with *yes* or *no* as appropriate.

Class/Operation	Union	Intersection	Complement
Regular	(a)		
Context-free			
Turing-decidable			(b)
Turing-acceptable	(c)		

3.(a)[5] Given two DFA's $M_1 = (K_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (K_2, \Sigma, \delta_2, s_2, F_2)$, your aim is to construct a **DFA** $M = (K, \Sigma, \delta, s, F)$ which accepts the union of $L(M_1)$ and $L(M_2)$. Each state of M corresponds to a pair in $K_1 \times K_2$ and the significance of being in the state labelled (q, r) with $q \in K_1$ and $r \in K_2$ is that M_1 would be in state q and M_2 would be in state r after the same input.

- (i) Which state should be the start state for *M*?
- (ii) Which states should be final states?
- (ii) Define the transition function δ of *M* in terms of δ_1 and δ_2 .
- (iii) What does this tell you about the answer for the box marked (a) in Question #2 and why?
- (b) [5] Prove your answer to the box marked (b) in Question 2 (Are Turingdecidable languages closed under complement?).
- (c) [5] Prove your answer to the box marked (c) in Question 2. (Are Turing-acceptable languages closed under union?).
- 4.(a)[5] State the pumping lemma for regular languages.
- (b) [10] Prove that $\{c \ I^n \ c \ I^{n+1} \ c : n \ge 0\}$ is not regular using the pumping lemma.
- 5.(a)[5] Design a PDA for $L_1 = \{c \ I^n c \ I^k c \ I^{2n} c : n, k \ge 0\}$ without resorting to finding a grammar first. Include comments.
- (b) [5] Give a context-free grammar for $L_2 = \{c \ I^m c \ I^k c \ I^{2n} c : n \le k \le 2n; n, m \ge 0\}$. Include comments which explain how your grammar works.
- 6. A *path* in a graph can be represented by a sequence of distinct vertices $v_1, v_2, ..., v_k$, such that for *i* from 1 to k 1, (v_i, v_{i+1}) is an edge of the graph. A *cycle* can be represented similarly with the additional condition that edge (v_k, v_1) must be present.

LONGEST PATH PROBLEM	LONGEST CYCLE PROBLEM
Instance: Graph G , integer k	Instance: Graph G, integer k
Question: Does G have a path	Question: Does G have a cycle
with k or more vertices?	with k or more vertices?

- (a) [5] Prove that LONGEST CYCLE is in NP.
- (b) [5] Use the knowledge that LONGEST PATH is NP-complete to prove that LONGEST CYCLE is NP-complete.

- 7. Consider the following string $\rho(M_1) = c I^2 c c I^2 c I^3 c I^2 c I^1 c$ $c I^2 c I^4 c I^3 c I^1 c c I^2 c I^5 c I^2 c I^1 c c I^3 c I^3 c I^1 c I^2 c c I^3$ $c I^4 c I^2 c I^1 c c I^3 c I^5 c I^3 c I^1 c c$
- (a) [5] What is M_1 ? Fill in the following chart. Use symbols $\{\#, I, c, a, b, \dots\}$ as needed.

Start state:					
State	Symbol	Next State	Head Instr.		

- (b) [5] Is it possible to decide whether M_1 from part (a) halts on input $\rho(M_1)$? Justify your claim.
- 8. For parts (a) and (b), suppose you know that the problem:
 "Given TM M₁, does M₁ halt when started on a blank tape?"
 is not Turing-decidable and further, it is the only problem you know to not be Turing-decidable.
- (a) [5] Is the following problem Turing-decidable?
 "Given TM M₂, does M₂ ever hang without writing any nonblank symbols when started on a blank tape?"

Circle yes or no. Prove your answer is correct.

(b) [5] Is the following problem Turing-decidable?
"Given TM M₃, does M₃ ever hang when started on some input w?"
Circle yes or no. Prove your answer is correct.