CSC 320- Practice Final Exam Summer 1993

- 1. For each of the following languages, indicate the most restrictive of the classes below into which it falls
 - (a) finite
 - (b) regular
 - (c) context-free
 - (d) Turing-decidable
 - (e) Turing-acceptable
 - (f) None of the above.

Example:

 $L = \{ a^n b^n : n \ge 0 \}$ The correct answer is (c) since L is context-free, but is not regular.

In this question, we will use $\rho(M)$ to denote the encoding of a Turing Machine *M* and $\rho(w)$ to denote the encoding of the string *w*. Assume that the encoding scheme used is as described in class and in the text.

_____i) The complement of
$$(aa \cup bb)^* (a \cup b)^*$$

 ii) {
$$a^{n^2} : n \ge 0$$
 }

- <u>iii</u>) { $w w : w \in \{a, b\}^*$ }
- _____ iv) { $\rho(M) \rho(w)$: M is a TM, w is an input string }
- _____v) { $\rho(M) \rho(w) : TM M accepts input w }$
- _____vi) { $\rho(M) \rho(w) : TM M \text{ does not accept input } w$ }
- _____ vii) { $\rho(D) \rho(w) : D \text{ is a DFA which accepts } w$ }
- _____ viii) { $\rho(D)$: D is a DFA which accepts some finite language }
- _____ ix) { $\rho(D) : D$ is a DFA which accepts some language which is not regular }
- _____x) { $\rho(M) \rho(a)$: TM M has at least one transition on the symbol a }
- _____ xi) { $\rho(M) \rho(a)$: TM M prints the symbol a when started on a blank tape }

xii) {	$\rho(M) \ \rho(a)$: TM M prints the symbol a when started on a blank tape after computing for at most one billion steps }
xiii) _i	$\{ \rho(M) \ \rho(w) : M \text{ is a deterministic TM which halts on w after an even number of moves } \}$
xiv) <i>{</i>	f strings in { a , b } [*] with length less than 13 }
xv)	$a^* b^* \cup b^* a^*$
xvi)	ϕ
xvii)	$\{w w^{R} u u^{R} : u, w \in \{a, b\}^{*}\}$
xviii)	$\{w w u u : u, w \in \{a, b\}^*\}$
xxix)	{ a^p : p is a prime number }
xx) {	w : w is the unary notation for 10^k }

 Draw the transition diagrams for DFA accepting the following two languages. Do not include any dead states.

(a) $L_1 = (aa \cup ab)^*$	(b) $L_2 = (a \cup ba)^*$
Label the states q_1, q_2, \cdots	Label the states r_1, r_2, \cdots

- (c) Use the construction for proving that regular languages are closed under intersection to construct a DFA for $L_1 \cap L_2$.
- 3. Context-free languages.
- (a) Give a PDA for $L_1 = \{ w \ c \ u \ c \ w^R : u, w \in \{a, b\}^* \}.$
- (b) Give a context-free grammar for $L_2 = \{ w \ c \ w^R \ c \ u \ : \ u, w \in \{a, b\}^* \}$.
- (c) What is $L_1 \cap L_2$? Use the pumping lemma to prove that this language is not context-free.
- (d) Prove that context-free languages are not closed under intersection.

- 4. Turing Machines
- (a) Design a TM M_L which when started on input $w \in \{a, b\}^*$, positions the tape head one square to the right of the blank at the lefthand end of w. Give the transition function and a machine schema for M_L .
- (b) Consider the following TM:

Does this TM ever write a "c" when started on input

i)	abba ?	yes	no	(Circle the correct response)
ii)	aba ?	yes	no	(Circle the correct response)
iii)	abab?	yes	no	(Circle the correct response)

- (c) What language over $\Sigma_0 = \{a, b\}$ does the TM from part (b) accept?
- 5. Which of the following problems are undecidable? Justify your claims.
- (a) Is there any input on which the TM of question 4 part (b) writes a "c"?
- (b) Given some arbitrary string $w \in \{a, b\}^*$, does the TM of question 4 part (b) ever write a "c" while computing on input w?
- (c) Will an arbitrary TM *M* ever write the symbol "*c*" when started on a blank tape?
- 6. The Hamilton Path and Cycle Problems were stated on the exam. Please refer to the study aid.
 - (a) Given that the Hamiltonian Path Problem is NP-complete, prove that the Hamiltonian Cycle Problem is NP-complete.Hint: Deleting any edge from a Hamiltonian cycle gives a Hamiltonian path.
 - (b) Suppose I told you that I could solve the Hamiltonian cycle problem in $O(n^3)$ time where *n* is the number of vertices in the graph. What is the significance of this?