1. What is wrong with this Big Oh proof?

f(n)= 7 n⁵ - 3 n⁴ + 2

$$\leq$$
 7 n⁵ - 3 n⁵ + 2 n⁵ = 6 n⁵

for $n \ge 1$ and therefore, f(n) is in $O(n^5)$.

2. Prove that f(n) is in $O(n^5)$.

General Technique for bounding a sum: Assume a_i , b_i , and $c_i \ge 0$ for i=1, 2, 3, ..., n.

n $\Lambda - \Sigma$ o	If $a_i \le b_i \le c_i$ for i= 1, 2, 3, n
$A - \sum_{i=1}^{n} \alpha_i$	then $A \leq B \leq C$.
n	That is, A is a lower bound for B
$B = \sum_{i=1}^{i} b_i$	and C is an upper bound for B

$$C = \sum_{i=1}^{n} C_i$$

1. What is wrong with this Big Oh proof?

f(n)= 7 n⁵ - 3 n⁴ + 2

$$\leq$$
 7 n⁵ - 3 n⁵ + 2 n⁵ = 6 n⁵

- For $n \ge 1$,
- 7 n⁵ ≤ 7 n⁵
- $2 \leq 2 n^5$
- BUT: -3n⁴ > -3 n⁵

	f(n)= 7 n ≤ 7 n [!]	⁵ - 3 n ⁴ + 2 ⁵ + 0 + 2 n ⁵ = 9 n ⁵ for n ≥ 1.
7 n ⁵	≤ 7 n ⁵	Some students used a smaller constant than
-3n ⁴	<u>≺</u> 0	what you get by summing the positive coefficients.
2	<u>≺</u> 2 n ⁵	This greatly complicates the process for finding n _o .

Some students used 3 n⁴ instead of 0 here which is OK but note that 0 works just as well.

If you do better on the final exam than on the midterm, I will replace your midterm score with your final exam score.

The midterm is graded out of 80.

Final exam tutorial: Sat. Dec. 2 at 1pm, in Elliott 168.

Т

Assignment #3 is due on Monday Oct. 30. You already know everything you need to do the assignment.