1. What is wrong with this Big Oh proof?

$$
\begin{aligned}
& f(n)=7 n^{5}-3 n^{4}+2 \\
& \leq \quad 7 n^{5}-3 n^{5}+2 n^{5}=6 n^{5}
\end{aligned}
$$

for $n \geq 1$ and therefore, $f(n)$ is in $O\left(n^{5}\right)$.
2. Prove that $f(n)$ is in $O\left(n^{5}\right)$.

General Technique for bounding a sum: Assume a_{i}, b_{i}, and $c_{i} \geq 0$ for $i=1,2,3, \ldots, n$.

$$
\begin{array}{ll}
A=\sum_{i=1}^{n} a_{i} & \text { If } a_{i} \leq b_{i} \leq c_{i} \text { for } i=1,2,3, \ldots n \\
\text { then } A \leq B \leq C . \\
B=\sum_{i=1}^{n} b_{i} & \text { That is, } A \text { is a lower bound for } B \\
C=\sum_{i=1}^{n} c_{i} & \text { and } C \text { is an upper bound for } B
\end{array}
$$

1. What is wrong with this Big Oh proof?

$$
\begin{aligned}
& f(n)=7 n^{5}-3 n^{4}+2 \\
& \leq \quad 7 n^{5}-3 n^{5}+2 n^{5}=6 n^{5}
\end{aligned}
$$

For $n \geq 1$,
$7 n^{5} \leq 7 n^{5}$
$2 \leq 2 n^{5}$
BUT: $-3 n^{4}>-3 n^{5}$

$$
\begin{aligned}
& \qquad \begin{array}{l}
f(n)=7 n^{5}-3 n^{4}+2 \\
\leq \\
n^{5}+ \\
0
\end{array} \quad \begin{array}{l}
\text { Some students used a }
\end{array} \\
& 7 n^{5} \leq 7 n^{5} \quad \begin{array}{l}
\text { smaller constant than } \\
\text { what you get by summing } \\
\text { the positive coefficients. } \\
-3 n^{4} \leq 0
\end{array} \\
& 2 \quad \begin{array}{l}
\text { This greatly complicates } \\
\text { the process for finding } n_{0} .
\end{array} \\
& \text { Some students used } 3 n^{4} \text { instead of } 0 \text { here } \\
& \text { which is OK but note that } 0 \text { works just as well. }
\end{aligned}
$$

If you do better on the final exam than on the midterm, I will replace your midterm score with your final exam score.

The midterm is graded out of 80 .
Final exam tutorial: Sat. Dec. 2 at 1pm, in Elliott 168.
Assignment \#3 is due on Monday Oct. 30. You already know everything you need to do the assignment.

