Start at vertex 0.

1. Find the parent and DFI arrays resulting from a DFS. Show the stack at each step of the computation.

2. Apply BFS showing the queue, parent, BFI and level information.

Depth First Search (DFS)

$(0,5)$
$(0,4)$
$(0,2)$

0. Pop $(0,0)$

Neighbours of 0 are 2, 4, 5 . Push (0, 2), (0, 4), (0,5).

1. Pop $(0,5)$

Neighbours of 5 are 0,3. Push $(5,3)$.

$(3,2)$
$(3,1)$
$(0,4)$
$(0,2)$

2. Pop $(5,3)$

Neighbours of 3 are 1, 2, 5. Push $(3,1),(3,2)$.

3. Pop $(3,2)$

Neighbours of 2 are 0, 3.

4. Pop $(3,1)$

Neighbour of 1 is 3 .

5. Pop $(0,4)$

Neighbour of 4 is 0 .

Ignore because 2 has already been visited.

BFS: Start with vertex 0 in queue.

visited

i	0	1	2	3	4	5
queue $[i]$	0					

BFS: Traverse neighbours of $0: 2,4,5$

i	0	1	2	3	4	5
queue $[i]$	0	2	4	5		

BFS: Visit neighbours of 2: 0,3

i	0	1	2	3	4	5
queue $[i]$	0	2	4	5	3	

BFS: Visit neighbours of 4:0

i	0	1	2	3	4	5
queue $[i]$	0	2	4	5	3	

BFS: Visit neighbours of 5: 0,3

i	0	1	2	3	4	5
queue $[i]$	0	2	4	5	3	

BFS: Visit neighbours of $3: 1,2,5$

i	0	1	2	3	4	5
queue $[i]$	0	2	4	5	3	1

BFS: Visit neighbours of 1:3

i	0	1	2	3	4	5
queue $[i]$	0	2	4	5	3	1

\mathbf{i}	0	1	2	3	4	5
queue $[i]$	0	2	4	5	3	1

i	0	1	2	3	4	5
$B F I[i]$	0	5	1	4	2	3

\mathbf{i}	0	1	2	3	4	5
level $[\mathrm{i}]$	0	3	1	2	1	1

A Decision Tree: Input is a, b, c

We can use our tactics for lower and upper bounding to prove that:

$\log _{2}(n!) \in \theta\left(n \log _{2} n\right)$

Which sorting algorithms have optimal time complexities for the comparison model (in a Big Oh sense)?
These $\theta\left(n \log _{2} n\right)$ in the worst case: Heapsort, Mergesort, Mediansort \dagger

Not optimal since worst case is $\theta\left(n^{2}\right)$:
Quicksort, Maxsort, Binary Tree Sort

Hashing:
After hashing to choose an initial table location, use a second hash function to choose the jump amount.

This helps to ensure the probe sequence is likely to hit an empty spot with a probability that corresponds to the percent of open spots in the table.

Worst case examples of $O(n)$ however can still be created (chose keys all having the same hash value and same jump value).

If a hash table was 50\% full, and if we assume that each time we probe a cell that the probability it is empty is 50%, what is the expected number of probes needed to insert an element into a hash table?

$$
\frac{1}{2}=1-\frac{1}{2}
$$

$$
\frac{1}{2}+\frac{1}{4}=1-\frac{1}{4}
$$

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=1-\frac{1}{8}
$$

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=1-\frac{1}{16}
$$

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}=1-\frac{1}{32}
$$

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}=1-\frac{1}{64}
$$

$\mathrm{H}=$ hash table size, $\mathrm{k}=\mathrm{H} / 2$.
It takes 1 probe $\frac{1}{2}$ of the time.
It takes 2 probes $\frac{1}{4}$ of the time.
It takes 3 probes $\frac{1}{8}$ of the time.
It takes 4 probes $\frac{1}{16}$ of the time.

It takes k probes $1 / 2^{\mathrm{k}}$ of the time.

The insertion
can take at most k+1
probes
because the hash table contains k items.

It takes $\mathrm{k}+1$ probes $1 / 2^{k}$ of the time.
$\mathrm{H}=$ hash table size, $\mathrm{k}=\mathrm{H} / 2$.
Expected number of probes:
$1 * \frac{1}{2}+2 * \frac{1}{4}+3 * \frac{1}{8}$
$+4 * \frac{1}{16}+\ldots+k^{*} 1 / 2^{k}$
$+(k+1)^{*} 1 / 2^{k}$
What is this sum?

The insertion can take at most k+1
probes
because the hash table contains k items.

It takes k+1 probes $1 / 2^{k}$ of the time.

