
Start at vertex 0.

1. Find the parent and DFI arrays resulting
from a DFS. Show the stack at each step of
the computation.

2. Apply BFS showing the queue, parent,
BFI and level information.

(0,0)

Depth First Search (DFS)

(0,5)

(0,4)

(0,2)

0. Pop (0,0)

Neighbours of 0 are 2, 4, 5.

Push (0, 2), (0, 4), (0,5).

(5,3)

(0,4)

(0,2)

1. Pop (0,5)

Neighbours of 5 are 0, 3.

Push (5,3).

(3,2)

(3,1)

(0,4)

(0,2)

2. Pop (5,3)

Neighbours of 3 are 1, 2, 5.

Push (3,1), (3,2).

(3,1)

(0,4)

(0,2)

3. Pop (3,2)

Neighbours of 2 are 0, 3.

(0,4)

(0,2)

4. Pop (3,1)

Neighbour of 1 is 3.

(0,4)

(0,2)

5. Pop (0,4)

Neighbour of 4 is 0.

6. Pop (0,2)

Ignore because 2 has already
been visited.

i 0 1 2 3 4 5

queue[i] 0

BFS: Start with vertex 0 in queue.

i 0 1 2 3 4 5

queue[i] 0 2 4 5

BFS: Traverse neighbours of 0: 2, 4, 5

i 0 1 2 3 4 5

queue[i] 0 2 4 5 3

BFS: Visit neighbours of 2: 0, 3

i 0 1 2 3 4 5

queue[i] 0 2 4 5 3

BFS: Visit neighbours of 4: 0

i 0 1 2 3 4 5

queue[i] 0 2 4 5 3

BFS: Visit neighbours of 5: 0, 3

i 0 1 2 3 4 5

queue[i] 0 2 4 5 3 1

BFS: Visit neighbours of 3: 1, 2, 5

i 0 1 2 3 4 5

queue[i] 0 2 4 5 3 1

BFS: Visit neighbours of 1: 3

i 0 1 2 3 4 5

queue[i] 0 2 4 5 3 1

i 0 1 2 3 4 5

BFI[i] 0 5 1 4 2 3

i 0 1 2 3 4 5

parent[i] 0 3 0 2 0 0

i 0 1 2 3 4 5

level[i] 0 3 1 2 1 1

19

A Decision Tree: Input is a, b, c

20

Note that a
complete binary
tree which has r
leaves has height
θ(log2 r):

Leaves Nodes Height

? 1 0

2 3 1

4 7 2

8 15 3

… …

2h 2h+1 - 1 h

21

We can use our tactics for lower and
upper bounding to prove that:

log2(n!) θ(n log2 n)

22

Which sorting algorithms have optimal
time complexities for the comparison
model (in a Big Oh sense)?

These θ(n log2 n) in the worst case:

Heapsort, Mergesort, Mediansort

Not optimal since worst case is θ(n2):

Quicksort, Maxsort, Binary Tree Sort

23

Hashing:
After hashing to choose an initial table
location, use a second hash function to
choose the jump amount.

This helps to ensure the probe sequence is
likely to hit an empty spot with a
probability that corresponds to the
percent of open spots in the table.

Worst case examples of O(n) however can
still be created (chose keys all having the
same hash value and same jump value).

If a hash table was 50% full, and if we
assume that each time we probe a cell
that the probability it is empty is 50%,
what is the expected number of probes
needed to insert an element into a hash
table?

1

2
+
1

4
+
1

8
= 1 -

1

8

1

2
+
1

4
= 1 -

1

4

1

2
= 1 -

1

2

1

2
+
1

4
+
1

8
+

1

16
+

1

32
+

1

64
= 1 -

1

64

1

2
+
1

4
+
1

8
+

1

16
+

1

32
= 1 -

1

32

1

2
+
1

4
+
1

8
+

1

16
= 1 -

1

16

H= hash table size, k = H/2.

It takes 1 probe
1

2
of the time.

It takes 2 probes
1

4
of the time.

It takes 3 probes
1

8
of the time.

It takes 4 probes
1

16
of the time.

…

It takes k probes 1/2k of the time.

The insertion

can take at

most k+1

probes

because the

hash table

contains k

items.

It takes k+1

probes 1/2k of

the time.

H= hash table size, k = H/2.

Expected number of probes:

1 *
1

2
+ 2 *

1

4
+ 3 *

1

8

+ 4 *
1

16
+ … + k * 1/2k

+ (k+1) * 1/2k

What is this sum?

The insertion

can take at

most k+1

probes

because the

hash table

contains k

items.

It takes k+1

probes 1/2k of

the time.

