
Start at vertex 0.

1. Find the parent and DFI arrays resulting 
from a DFS. Show the stack at each step of 
the computation.

2. Apply BFS showing the queue, parent, 
BFI and level information.



(0,0)

Depth First Search (DFS)



(0,5)

(0,4)

(0,2)

0. Pop (0,0)

Neighbours of 0 are 2, 4, 5.

Push (0, 2), (0, 4), (0,5).



(5,3)

(0,4)

(0,2)

1. Pop (0,5)

Neighbours of 5 are 0, 3.

Push (5,3).



(3,2)

(3,1)

(0,4)

(0,2)

2. Pop (5,3)

Neighbours of 3 are 1, 2, 5.

Push (3,1), (3,2).



(3,1)

(0,4)

(0,2)

3. Pop (3,2)

Neighbours of 2 are 0, 3.



(0,4)

(0,2)

4. Pop (3,1)

Neighbour of 1 is 3.



(0,4)

(0,2)

5. Pop (0,4)

Neighbour of 4 is 0.



6. Pop (0,2)

Ignore because 2 has already 
been visited.



i 0 1 2 3 4 5

queue[i] 0

BFS: Start with vertex 0 in queue.



i 0 1 2 3 4 5

queue[i] 0 2 4 5

BFS: Traverse neighbours of 0: 2, 4, 5



i 0 1 2 3 4 5

queue[i] 0 2 4 5 3

BFS: Visit neighbours of 2: 0, 3



i 0 1 2 3 4 5

queue[i] 0 2 4 5 3

BFS: Visit neighbours of 4: 0



i 0 1 2 3 4 5

queue[i] 0 2 4 5 3

BFS: Visit neighbours of 5: 0, 3



i 0 1 2 3 4 5

queue[i] 0 2 4 5 3 1

BFS: Visit neighbours of 3: 1, 2, 5



i 0 1 2 3 4 5

queue[i] 0 2 4 5 3 1

BFS: Visit neighbours of 1: 3



i 0 1 2 3 4 5

queue[i] 0 2 4 5 3 1

i 0 1 2 3 4 5

BFI[i] 0 5 1 4 2 3



i 0 1 2 3 4 5

parent[i] 0 3 0 2 0 0

i 0 1 2 3 4 5

level[i] 0 3 1 2 1 1
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A Decision Tree:   Input is a, b, c
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Note that a 
complete binary 
tree which has r 
leaves has height 
θ(log2 r):

Leaves Nodes Height

? 1 0

2 3 1

4 7 2

8 15 3

… …

2h 2h+1 - 1 h
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We can use our tactics for lower and 
upper bounding to prove that:

log2( n! )  θ(n log2 n)
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Which sorting algorithms have optimal 
time complexities for the comparison 
model (in a Big Oh sense)?

These θ(n log2 n) in the worst case:

Heapsort, Mergesort, Mediansort

Not optimal since worst case is θ(n2):

Quicksort, Maxsort, Binary Tree Sort
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Hashing:
After hashing to choose an initial table 
location, use a second hash function to 
choose the jump amount.

This helps to ensure the probe sequence is 
likely to hit an empty spot with a 
probability that corresponds to the 
percent of open spots in the table.

Worst case examples of O(n) however can 
still be created (chose keys all having the 
same hash value and same jump value).



If a hash table was 50% full, and if we 
assume that each time we probe a cell 
that the probability it is empty is 50%, 
what is the expected number of probes 
needed to insert an element into a hash 
table?



1

2
+ 
1

4
+ 
1

8
= 1 -

1

8

1

2
+ 
1

4
= 1 -

1

4

1

2
= 1 -

1

2



1

2
+ 
1

4
+ 
1

8
+ 

1

16
+ 

1

32
+ 

1

64
= 1 -

1

64

1

2
+ 
1

4
+ 
1

8
+ 

1

16
+ 

1

32
= 1 -

1

32

1

2
+ 
1

4
+ 
1

8
+ 

1

16
= 1 -

1

16



H= hash table size, k = H/2.

It takes 1 probe   
1

2
of the time.

It takes 2 probes 
1

4
of the time.

It takes 3 probes 
1

8
of the time.

It takes 4 probes 
1

16
of the time.

…

It takes k probes  1/2k of the time.

The insertion 

can take at 

most k+1 

probes 

because the 

hash table 

contains k 

items.

It takes k+1 

probes 1/2k of 

the time.



H= hash table size, k = H/2.

Expected number of probes:

1 *  
1

2
+ 2 *

1

4
+ 3 * 

1

8

+ 4 * 
1

16
+ … + k * 1/2k

+ (k+1) * 1/2k

What is this sum?

The insertion 

can take at 

most k+1 

probes 

because the 

hash table 

contains k 

items.

It takes k+1 

probes 1/2k of 

the time.


