
1

1. Divide into teams of 4-5 students.

2.Repeat until your group has completed 40-50
experiments:

Flip a coin until it comes up heads and then
record the number of coin flips it took to get
heads.

3. Fill out a chart and use it to compute the
average number of flips.

Number of flips for heads Number of trials

1

2

3

…

I am going to give you time during class
for the course reviews on Monday.

Please bring your computer or a phone to
class.

Or you can use one of the lab computers,
or go home early and do them.

I would like to see 100% of the students
respond to these.

2

3

Hashing

Just as radix sort can beat the

Ω(n log n) barrier for the comparison
model, hashing can be faster in practice
(although not always in the worst case)
than the log n time used in a binary
search.

Slides today from Spring 2007 were created by

Ulrike Stege and/or Hausi Muller (blue boxes on

top).

4

5

On

average

6

On

average

7

8

Collision: two data items have the same hash value.

Collision resolution scheme: strategy for dealing
with collisions.

Open hashing: use extra space, for example a
linked list of items hashing to the same place.

Closed hashing: data is stored in the hash table.

Open addressing: the index at which an object will
be stored in the hash table is not completely
determined by its hash code. For example: linear
probing.
Closed hashing requires either a perfect hash
function or open addressing.

9

10

Open addressing

11

12

13

If p is a prime number and k is an integer,

1 ≤ k ≤ p-1, then

x, x+k, x+2k, x+3k, … , x + (p-1)k

are all different numbers modulo p.

So this is a probe sequence that can be
used to visit all locations of the hash
table.

This is why primes a good choices for a
hash table size.

14

A small example:
Assume integral key values.
Simple hash function: hash(key)= key modulo p,
where p, a prime number, is the hash table
size.

Suppose p=11.
The hash table is an array H:
int H[0…10];

In practice it best to choose p so that the
number of data items you expect to have is
not more than 60% of p.

15

NULL_DATA= some value that is illegal
for a key.

If any integer is permitted, a separate
True/False array can be used to indicate
if a table entry is being used or not.

To initialize the hash table:

for (i=0; i < P; i++) H[i]= NULL_DATA;

16

To determine if a key is in the table:

Use probe sequence until either the key or
an empty table location is found.

int find(int [] H, int key)

r= hash(key)

while (H[r] != NULL_DATA && H[r]!= key)

{ r= (r+1) % P; }

return(r) // Empty spot or position of key

17

18

19

hash(x) = x mod 11,

Using linear probing, insert:

11, 32, 52, 30, 15, 31, 49, 9, 19

x hash(x) Probe sequence

… … …

Linear probing means that we try location
k=hash(x) first and then k+1, k+2, k+3,
k+4, … until an empty spot is found.
What happens when we try to find 8?

20

Worst
case
time:

O(n)

21

A run is a consecutive sequence of cells in
the array (treated as a cyclic array) that
are non-empty.

When using linear probing, long runs are
likely to form and then after they do, the
probability of hashing into a run is high.
Then the search must continue to the end
of the run before the key can be inserted
and the run grows in length after the
insertion.

22

Quadratic probing is an attempt to deal
with this.

Recall, the jump sequence is obtained by
adding 1, 4, 9, 16, 25, …
= 12, 22, 32, 42, 52, …

This helps but we still get “runs” when
keys hash to the same space but the “runs”
are spaced out in the array.

23

One solution to this problem:
After hashing to choose an initial table
location, use a second hash function to
choose the jump amount.

This helps to ensure the probe sequence is
likely to hit an empty spot with a
probability that corresponds to the
percent of open spots in the table.

Worst case examples of O(n) however can
still be created (chose keys all having the
same hash value and same jump value).

24

hash(x) = x mod 11,

j= [(x/10) mod 10] + 1 // jump for probes

Insert: 11, 32, 52, 30, 15, 31, 49, 9, 19

x hash(x) j Probe sequence

… … … …

What happens when we try to find 27?

