1. Divide into teams of 4-5 students.

2.Repeat until your group has completed 40-50

experiments:

Flip a coin until it comes up heads and then
record the number of coin flips it ook to get

heads.

3. Fill out a chart and use it to compute the

average number of flips.

Number of flips for heads

Number of trials

1

2

3

I am going to give you time during class
for the course reviews on Monday.

Please bring your computer or a phone to
class.

Or you can use one of the lab computers,
or go home early and do them.

I would like to see 100% of the students
respond to these.

Hashing
Just as radix sort can beat the

€1(n log n) barrier for the comparison
model, hashing can be faster in practice
(although not always in the worst case)
than the log n time used in a binary
search.

Slides today from Spring 2007 were created by
Ulrike Stege and/or Hausi Muller (blue boxes on

top).

Dictionary

* A dictionary 1s an unordered container that contains key-value pairs

* The keys are unique, but the values can be anything (e.g., don’t have
to be unique)

z
Peggy

Bette

™ 39
45
keys
: Maarten
Hausi values
~ /
37 39
Search key Associated value
Bette 39
Haus1 37
Peggy 45)

Maarten 39

Implementation Strategies

insert() delete() member()

Linear list

(linked list, O(1) O(n) O(n)
array, vector)

Balanced
binary search | O(logn) O(log n) O(log n)
tree
Hash table o(1) 0(1) o1y |©n
average
CSC 225—Spring 2007 8

How does hashing work?
erage
« How can we find an element 1n a hash table in constant time O(1)?

« (Given a key, we compute an index into the hash table using a /ash
Junction of a hash code

- key = hashFunction) = index

Search key Associated value

Bette

39

Haus1

37

Peggy

45

Maarten

39

Hashtable

12

Hash Functions

* A hash function or hash code maps keys to indices
» It should map keys uniformly across all possible indices
» It should be fast to compute
» It should be applicable to all objects
* Hash table size
The hash table size should be a prime number

The hash table size should not be a power of two: however most advanced hash
functions use a power of two because division 1s much faster than with a prime

* When two keys map to the same index. we have a hash collision

* When a collision occurs. a collision resolution algorithm is used to establish
the locations of the colliding keys

* In some cases when we know all of the key values in advance we can
construct a perfect hash function that maps each key to a different index (1.e..
with no collisions)

Lxcellent article: Designing a good hash fuaction is an art
http://burtleburtle.net/bob/hash/doobs.html

CSC 225—Spring 2007 13

Co
Co

Ision: Two data items have the same hash value.

ision resolution scheme: strategy for dealing

with collisions.

Open hashing: use extra space, for example a
linked list of items hashing to the same place.

Closed hashing: data is stored in the hash table.

Open addressing: the index at which an object will
be stored in the hash table is not completely
determined by its hash code. For example: linear
probing.

Closed hashing requires either a perfect hash
function or open addressing. 3

String Hash Function: An Example

» Let
» s be a key of type String
» sum be the sum of the ordinal values of all the characters in s

N be the hash table size
* Then the hash table index k 1s

k = sum 2 N

* where % is the modulo operator
* Thus, k 1s in the range 0 to N-1

« Example
s = “ABC”
N = 59 (prime number)
sum = ord(‘A") + ord(‘'B') + ord('C’)
= 60 + 61 + 62 = 183

k =sum T N = 183 % 59 = ¢©
CSC 225—Spring 2007 14

Separate Chaining

Hashtable frg
0] null 369
1 null
2| null ABC Y7 POR
3 329 377 415
r;l null =
6| null sat
7| null 379
8 null
9| null _
10| null Open addressing
11
121 qull CSC 225—Spring 2007 16

Linear Probing

Linear probing is an open addressing algorithm
Locations are checked from the hash location k to the
end of the table and the element 1s placed in the first
empty slot

» If the bottom of the table 1s reached, checking “wraps
around” to the start of the table (1.e., modulo hashtable
s1ze)

Collision resolution factors into member () ,
insert(), delete()

Thus. if linear probing is used. these routines must
continue down the table until a match or empty
location is found

Even though the hash table size 1s a prime number (i.e.,

13). this is probably not an appropriate size: the size
should be at least 30-40% larger than the maximum
number of elements ever to be stored in the table

CSC 225—Spring 2007

MG =1 Oy h B e = O

—_ =
(S =

Quadratic Probing

* Quadratic probing 1s another open
addressing algorithm

* [.ocations are checked from the hash
location to the end of the table and
the element 1s placed 1n the first
computed empty slot

» Instead of probing consecutive location,
we probe the 1st, 4t Oth 16t etc. — this
1s called quadratic probing

» If the bottom of the table 1s reached,

checking “wraps around” to the start of

the table (1.e., modulo hash table size)
CSC 225—Spring 2007

MO0 =1 Gy bh B e R = O

—t
—

[a—
[a—

—
]

If p is a prime number and k is an integer,
1<k<p-1, then

X, x+k, x+2k, x+3k, ... , x + (p-1)k
are all different numbers modulo p.

So this is a probe sequence that can be
used to visit all locations of the hash
table.

This is why primes a good choices for a
hash table size.

13

A small example:

Assume integral key values.

Simple hash function: hash(key)= key modulo p,
where p, a prime number, is the hash table
size.

Suppose p=11.
The hash table is an array H:
int H[O...10];

In practice it best to choose p so that the
number of data items you expect to have is
not more than 60% of p.

14

NULL_DATA= some value that is illegal
for a key.

If any integer is permitted, a separate
True/False array can be used to indicate
if a table entry is being used or not.

To initialize the hash table:

for (i=0; i < P; i++) H[i]= NULL_DATA;

15

To determine if a key is in the table:

Use probe sequence until either the key or
an empty table location is found.

int find(int [JH, int key)

r= hash(key)

while (H[r]!= NULL_DATA &4& H[r]!= key)
{ r=(r+1) % P; }

return(r) // Empty spot or position of key

16

Delete function

» For separate chaining, delete element 1n the

linked list

* For open addressing, mark element as
deleted 1n the hash table since there might

be elements following the deleted element
in the linear or quadratic probing chain

17

Analysis of Hash table Access

If the number of collisions 1s small, searching, inserting,
and deleting elements 1n a hash table takes O(1) time

To reduce the number of collisions, 1n addition to using
a good hash function, we should make sure that the
table does not get too full

The load factor of a hash table 1s the ratio of occupied
slots to total slots

For best results, the load factor should not be above 0.6
If 1t gets higher, we should extend the hash table and re-
hash all of i1ts elements

CSC 225—Spring 2007 29

hash(x) = x mod 11,
Using linear probing, insert:
11, 32, 52, 30, 15, 31,49, 9, 19

X | hash(x) Probe sequence

Linear probing means that we try location
k=hash(x) first and then k+1, k+2, k+3,
k+4, ... until an empty spot is found.

What happens when we try to find 82 1

Summary

* Dictionary
» Member, insert, delete: associations: keys. values

« Hash table
» Array of hash entries

» Hash function
» Compute index from key by ‘hashing’ the key
+ Distribute indeces over entire index space: 0..htSize

» Collisions WO r S_i_

+ Different keys map to the same index

* Open addressing: linear, quadratic probing case

* Separate chaining . .
» Hash table implementation T' me.

» Hash table size should be a prime number

+ 3-state hash table entry (empty. valid, deleted) O(n)

» Time complexity

+ Member, insert, delete take O(1) time (1.e., constant time)
CSC 225—Spring 2007 30

A run is a consecutive sequence of cells in
the array (treated as a cyclic array) that
are non-empty.

When using linear probing, long runs are
ikely to form and then after they do, the
probability of hashing into a run is high.
Then the search must continue to the end
of the run before the key can be inserted
and the run grows in length after the
Insertion.

21

Quadratic probing is an attempt to deal
with this.

Recall, the jump sequence is obtained by
adding 1, 4, 9, 16, 25, ..
=12 22 32 42 K2

This helps but we still get "runs” when
keys hash to the same space but the "runs”
are spaced out in the array.

22

One solution to this problem:

After hashing to choose an initial table
location, use a second hash function to

choose the jump amount.

This helps to ensure the probe sequence is

ikely To hit an empty spot with a
probability that corresponds to the
percent of open spots in the table.

Worst case examples of O(n) however can

still be created (chose keys al

having the

same hash value and same jump value).

hash(x) = x mod 11,
j= [(x/10) mod 10 1+ 1 // jump for probes
Insert: 11, 32, 52, 30, 15, 31,49, 9, 19

X |hash(X)| | Probe sequence

What happens when we try to find 27?

24

