

Apply BFS starting at vertex 0. Show the
queue, the parent, the the BFI, and the
level arrays. Process the neighbours of a
vertex in numerical order.

Stacks

http://www.newhospitalityseating.com/wp-content/uploads/2007/12/shay-alkalay-_coloured-stack.jpg
http://images.google.com/imgres?imgurl=http://www.becreativekids.com/images_md/0576-RainbowStacker.jpg&imgrefurl=http://www.becreativekids.com/melissa_doug/classic_toys.php&h=900&w=535&sz=222&hl=en&start=116&um=1&tbnid=PCPKalKYgisn-M:&tbnh=146&tbnw=87&prev=/images%3Fq%3Dstack%2Btoy%26start%3D108%26ndsp%3D18%26um%3D1%26hl%3Den%26rlz%3D1T4ADBR_enCA238CA238%26sa%3DN

Stack Data Structure: permits push
and pop at the top of the stack.

Using an array for a stack:

top=5 = # items in stack

To test if the stack is non-empty:

if (top > 0)

To pop x from the stack:

top--; x= S[top];

To push x onto the stack:

S[top]= x; top++;

Using an linked list for a stack:

DFS (Depth First Search) uses a stack
instead of a queue.

Data structures:
A stack of edges of the form (p, v)
where p is the DFS parent of node v.
visited[i]= true is vertex i has been
visited and false if not.
parent[i]= DFS tree parent of node i. The
parent of the root s is s.

Major difference between BFS and DFS:

BFS: vertex is marked as visited and the
parent is assigned when it is ADDED to
the queue.

DFS: vertex is marked as visited and its
parent is assigned when it is REMOVED
from the stack.

The pseudo code for DFS is:
1. Mark each vertex as unvisited.
2. Push (s, s) on the stack.
3. While the stack is not empty do

Pop (p, v) from the stack.
If v is not visited

mark v as visited
parent[v]= p;
for each neighbour u of v do

if u is not visited
push (v, u) on stack.

end while

DFS parent information:

The blue spanning tree is the DFS tree:

DFS Tree

BFS Tree

Comparing DFS to BFS:

Timing analysis:

Assume the graph has n vertices and m
edges.

Step 1 takes O(n) time.
Step 2 takes O(1) time.

The pseudo code for DFS is:
1. Mark each vertex as unvisited.
2. Push (s, s) on the stack.
3. While the stack is not empty do

Pop (p, v) from the stack.
If v is not visited

mark v as visited
parent[v]= p;
for each neighbour u of v do

if u is not visited
push (v, u) on stack.

end while

Adjacency matrix:

Adjacency list:

To determine the work from step 3, observe first
that each vertex is "visited" at most one time,
and so we go through its neighbours one time. An
arc (p, u) is pushed on the stack because we are
visiting u’s neighbour p. Thus, at most 2*m+1
items are pushed to the stack [(s,s) and for each
edge (u, v), possibly (u, v) and (v, u)]. Thus the
while loop can be entered at most 2*m+1 times.

However, the only times where the code takes
more than constant time is when a vertex is
visited. Each vertex is visited at most once
(exactly once for a connected graph) So the total
time is O(n2) with adjacency matrices or O(m)
with adjacency lists.

Space analysis:

A stack size of 2*m is adequate because
each edge is pushed on the stack at most
two times.

The entry (s,s) is pushed on the stack
but then it is immediately popped so we
do not have to count it in our worst case
space analysis.

Can both of (u, v) and (v, u) end up on the
stack?

Apply DFS starting at vertex 0.

