
1

How many key comparisons does this
algorithm do for finding the min and the
max of n=2k data items:

1. for (i=0; i < n; i+=2)

if (A[i] > A[i+1]) swap(A[i], A[i+1])

Then use a linear scan (like in MaxSort) to

2. Find the min of

A[0], A[2], A[4], … , A[n-2]

3. Find the max of

A[1], A[3], A[5], … A[n-1]

2

Old final Exam Question

Answer true or false and justify your
answer:

Since it takes at least n-1 key comparisons
to find the min of n data items and it takes
at least n-1 key comparisons to find the
max of n data items, it takes at least 2n-2
key comparisons to find both the min and
the max.

3

Announcements:

Assignment #5: Programming questions:
Upload your solution to connex by 11:55pm on
Saturday Nov. 25.

Assignment #6: Hand this in on paper at the
beginning of class on Thursday Nov. 30.

Special Final Exam Tutorial: Sat. Dec. 2: 1pm to
4pm in Elliott 168.

4

Graph Traversals
Two common types of graph traversals are
Depth First Search (DFS) and Breadth First
Search (BFS). A preorder traversal of a binary
tree is a special case of DFS and a level order
traversal is a special case of BFS. DFS is
implemented with a stack, and BFS with a
queue.
The aim in both types of traversals is to visit
each vertex of a graph exactly once. In DFS,
you follow a path as far as you can go before
backing up. With BFS, you visit all the
neighbours of the current node before
exploring further afield in the graph.

5

Queue (used for BFS)

http://www.ac-nancy-metz.fr/enseign/anglais/Henry/bus-queue.jpg

http://devcentral.f5.com/weblogs/images/devcentral_f5_com/weblogs/Joe/WindowsLiveWriter/P
owerShellABCsQisforQueues_919A/queue_2.jpg

6

Queue data structure:

Items are:

Added to the rear of the queue.

Removed from the front of the queue.

http://cs.wellesley.edu/~cs230/assignments/lab12/queue.jpg

7

Queues can be implemented as a linked list.
Which end of the list should we use for the
queue front?

8

Queue data structure:

Items are:

Added to the rear of the queue.

Removed from the front of the queue.

9

If you have an upper bound on the lifetime size
of the queue then you can use an array:
qfront=5, qrear=9

(qrear is next empty spot in array)

10

To test if there is something in the queue:

if (qfront < qrear)

To add x to the queue:

Q[qrear]= x; qrear++;

To delete front element of the queue:

x= Q[qfront]; qfront++;

Q:

qfront=5, qrear=9

11

If the neighbours of each vertex are
ordered according to their vertex
numbers, in what order does a BFS
starting at 0 visit the vertices?

12

BFS starting at a vertex s using an array for
the queue:

Data structures:
A queue Q[0..(n-1)] of vertices, qfront, qrear.

parent[i]= BFS tree parent of node i.
The parent of the root s is s.
To initialize:
// Set parent of each node to be -1 to indicate
// that the vertex has not yet been visited.
for (i=0; i < n; i++) parent[i]= -1;

// Initialize the queue so that BFS starts at s
qfront=0; qrear=1; Q[qfront]= s;
parent[s]=s;

13

while (qfront < qrear) // Q is not empty

u= Q[qfront]; qfront++;

for each neighbour v of u

if (parent[v] == -1) // not visited

parent[v]= u;

Q[qrear]= v; qrear++;

end if

end for

end while

14

15

Red arcs represent parent information:

16

The blue spanning tree is the BFS tree.

17

Adjacency matrix:

18

Adjacency list:

19

BFI[v]= Breadth first index of v

= step at which v is visited.

The BFI[v] is equal to v’s position in the
queue.

20

level[v]= distance from v to the root
vertex r (number of edges on a shortest
path from v to r)

v 0 1 2 3 4 5 6 7

level(v) 0 1 2 1 2 3 3 1

21

To initialize:
// Set parent of each node to be -1 to indicate
// that the vertex has not yet been visited.
for (i=0; i < n; i++) parent[i]= -1;

// Initialize the queue so that BFS starts at s
qfront=0; qrear=1; Q[qfront]= s;
parent[s]=s;

BFI[s]= 0;

Level[s]=0;

22

while (qfront < qrear) // Q is not empty

u= Q[qfront]; qfront++;

for each neighbour v of u

if (parent[v] == -1) // not visited

parent[v]= u; BFI[v]= qrear;

level[v]= level[u]+1;

Q[qrear]= v; qrear++;

end if

end for

end while

23

One application:

How many connected components does a
graph have and which vertices are in each
component?

24

To find the connected components:

for (i=0; i < n; i++)

parent[i]= -1;

nComp= 0;

for (i=0; i < n; i++)

if (parent[i] == -1)

nComp++;

BFS(i, parent, component, nComp);

25

BFS(s, parent, component, nComp)

// Do not initialize parent.

// Initialize the queue so that BFS starts at s

qfront=0; qrear=1; Q[qfront]= s;

parent[s]=s;

component[s]= nComp;

26

while (qfront < qrear) // Q is not empty

u= Q[qfront]; qfront++;

for each neighbour v of u

if (parent[v] == -1) // not visited

parent[v]= u; component[v]= nComp;

Q[qrear]= v; qrear++;

end if

end for

end while

27

How much time does BFS take to
indentify the connected components of a
graph when the data structure used for a
graph is an adjacency matrix?

28

Adjacency matrix:

29

How much time does BFS take to
indentify the connected components of a
graph when the data structure used for a
graph is an adjacency list?

30

Adjacency list:

