How many key comparisons does this
algorithm do for finding the min and the
max of n=2k data items:

1. for (i=0; i < n; i+=2)
if (A[i]> A[i+1]) swap(A[i], A[i+1])
Then use a linear scan (like in MaxSort) to
2. Find the min of
A[O], A[2], A[4], ..., A[n-2]
3. Find the max of
A[1], A[3], A[B]. ... A[n-1]

Old final Exam Question

Answer true or false and justify your
answer:

Since it takes at least n-1 key comparisons
to find the min of n data items and it takes
at least n-1 key comparisons to find the
max of n data items, it takes at least 2n-2
key comparisons to find both the min and
the max.

Annhouncements:

Assignment #5: Programming questions:
Upload your solution to connex by 11:55pm on
Saturday Nov. 25.

Assignment #6: Hand this in on paper at the
beginning of class on Thursday Nov. 30.

Special Final Exam Tutorial: Sat. Dec. 2: 1pm to
4pm in Elliott 168.

Graph Traversals

Two common types of graph traversals are
Depth First Search (DFS) and Breadth First
Search (BFS). A preorder traversal of a binary
tree is a special case of DFS and a level order
traversal is a special case of BFS. DFS is
implemented with a stack, and BFS with a
queue.

The aim in both types of traversals is to visit
each vertex of a graph exactly once. In DFS,
you follow a path as far as you can go before
backing up. With BFS, you visit all the
neighbours of the current node before
exploring further afield in the graph.

Queue (used for BFS)

http://devcentral.f5.com/weblogs/images/devcentral_f5_com/weblogs/Joe/WindowsLiveWriter/P
owerShellABCsQisforQueues_919A/queue_2.jpg

F‘“* 3

| F
l
‘ -

9
131560 ~

http://www.ac-nancy-metz.fr/enseign/anglais/Henry/bus-queue.jpg 5

Queue data structure:

Items are:

Added to the rear of the queue.
Removed from the front of the queue.

http://cs.wellesley.edu/~cs230/assignments/labl12/queue.jpg

Queues can be implemented as a linked list.
Which end of the list should we use for the
queue front?

qfront

Queue data structure:
Items are:
Added to the rear of the queue.

Removed from the front of the queue.

qfront

BEEEEEES A

qrear

If you have an upper bound on the lifetime size
of the queue then you can use an array:
gfront=5, grear=9

(grear is next empty spot in array)

0 1 2 3 4 5 6 7 8 9 10 1 12 13

[[[[slefalal T T T T

|E|%|3|—%6 T[4 1] Pk

qrear

gfront=5, grear=9

0 1 2 3 4 5 6 7 8 9 10 1 12 13

Q: [[[[slefalal T T T T

To test if there is something in the queue:
if (gfront < grear)

To add x to the queue:

Q[qgrear]= x. grear++;

To delete front element of the queue:

x= Q[qfront]. qfront++;

10

If the neighbours of each vertex are
ordered according to their vertex
numbers, in what order does a BFS
starting at O visit the vertices?

(1 >
© © 5

11

BFS starting at a vertex s using an array for
the queue:
Data structures:
A queue Q[O..(n-1)] of vertices, gfront, qrear.
parent[i]= BFS tree parent of node i.
The parent of the root s is s.
To initialize:
// Set parent of each node to be -1 to indicate
// that the vertex has not yet been visited.
for (i=0; i < n; i++) parent[i]= -1;

// Initialize the queue so that BFS starts at s
qfront=0; grear=1; Q[qfront]= s;
parent[s]=s; 12

while (gfront < qrear) // Q is not empty
u= Q[gfront]; qgfront++;
for each neighbour v of u
if (parent[v]==-1)// not visited
parent[v]= u;
Q[qgrear]= v; qrear++;
end if
end for

end while

13

Red arcs represent parent information:

NS

5

3)

15

Adjacency matrix:

O12 3 4
0/|0{1|0/1|0

11101111

17

2/10/1/0/0]1
31111001
4/0/1/1/10

Adjacency list:

Oof Ll —1A3
1| 101 113
2_—%|1 —1- 4
3{ Lol 14
4! 1] 13

BFI[v]= Breadth first index of v
= step at which v is visited.

The BFI[v] is equal to v's position in the
queue.

o 1 2 3 4 5 6 7
Qlojtfs]7f2]4[5]6] .

level[v]= distance from v to the root
vertex r (number of edges on a shortest
path from v to r)

Vv O/ 1,2 | 3| 4| 5|67

levellv) | O | 1 2 1 2 3 | 3|1

To initialize:

// Set parent of each node to be -1 to indicate
// that the vertex has not yet been visited.
for (i=0; i < n; i++) parent[i]= -1;

// Initialize the queue so that BFS starts at s
qgfront=0; grear=1; Q[qfront]= s;

parent[s]=s;

BFI[s]= O;

Level[s]=0;

21

while (qfront < grear) // Q is not empty
u= Q[qfront]; qfront++;
for each neighbour v of u
if (parent[v] == -1) // not visited
parent[v]= u; BFI[v]= grear;
level[v]= level[u]+1;
Q[qgrear]= v; grear++;
end if

end for

22

end while

One application:

How many connected components does a
graph have and which vertices are in each

compohent?

© o ./.

Z ©

23

To find the connected components:
for (i=0; i < n; i++)
parent[i]= -1;
nComp= O;
for (i=0; i < n; i++)
if (parent[i] == -1)
nComp++;
BFS(i, parent, component, nComp);

24

BFS(s, parent, component, nComp)

// Do not initialize parent.

// Initialize the queue so that BFS starts at s
gfront=0; grear=1; Q[qfront]= s;

parent[s]=s;

component[s]= nComp;

25

while (gfront < grear) // Q is not empty
u= Q[qfront]; gfront++;
for each neighbour v of u
if (parent[v] == -1)// not visited
parent[v]= u; component[v]= hComp;
Q[qgrear]= v; grear++;
end if
end for

end while

26

How much time does BFS take to
indentify the connected components of a
graph when the data structure used for a
graph is an adjacency matrix?

27

Adjacency matrix:

O12 3 4
0/|0{1|0/1|0

11101111

28

2/10/1/0/0]1
31111001
4/0/1/1/10

How much time does BFS take to
indentify the connected components of a
graph when the data structure used for a
graph is an adjacency list?

29

Adjacency list:

Oof Ll —1A3
1| 101 113
2_—%|1 —1- 4
3{ Lol 14
4! 1] 13

