
1

For this graph, give its

(a) adjacency matrix,  (b) upper triangular 
adjacency matrix input format, 

(c) adjacency list,  and (d) adjacency list input 
format.
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How can we determine quickly at each step 
whether adding a new edge creates a cycle?

Or equivalently, given an edge (u,v) are u and 
v in the same component?
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How many connected components does a 
graph have and which vertices are in each 
component?

Algorithms: BFS, DFS or UNION/FIND
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Union/find: dynamic data structure for 
keeping track of the connected 
components of a graph.
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The UNION/FIND data structure is a 
dynamic data structure for graphs used to 
keep track of the connected components. 

It has 2 routines: 

FIND(u): returns the name of the 
component containing vertex u 

UNION(u, v): unions together the 
components containing u and v 
(corresponding to an addition of edge (u,v) 
to the graph). 
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Each vertex starts out in a component by 
itself:

Go through adjacency list or matrix 
adding each edge we encounter.
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Approach 1 (Flat scheme): parent[i]= min 
number of vertex in same component as 
vertex i.
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Edge (0,4): Union components with 
vertices 0 and 4.
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Edge (1,6): Union components with 
vertices 1 and 6.
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Edge (3,4): Union components with 
vertices 3 and 4.
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Edge (3,5): Union components with 
vertices 3 and 5.
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Edge (4,5): 4 and 5 are already in the 
same component (the one with vertex 0)



13

Draw the directed graph that represents 
the flat union find data structure defined 
by this parent array:

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 5 5 0 8 0

Show the updated parent array and 
also draw a picture after 

flat_union(7, 4).
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One algorithm that can use a union/find 
data structure: Kruskal’s algorithm for 
finding a minimum weight spanning tree.

One application:

A cable company must install cable to a new 
neighbourhood. The cables are constrained 
to be buried along certain paths. The cost 
varies for different paths. A minimum 
weight spanning tree gives the cheapest 
way to connect everyone to cable.
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Water distribution network
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For this graph, what would be the contents 
of the parent array before and after the 
operation union(6,8)?

parent:

0 1 2 3 4 5 6 7 8 9 10 11 12 13
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For this graph, what would be the contents 
of the parent array before and after the 
operation union(6,8)?

parent:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 0 1 4 5 1 1 5 1 5 5 5 5
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union(6,8)?
parent:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 0 1 4 1 1 1 1 1 1 1 1 1

Vertex 6 is in the component with representative 1.
Vertex 8 is in the component with representative 5.
Change each 5 to 1:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 0 1 4 5 1 1 5 1 5 5 5 5
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 0 1 4 1 1 1 1 1 1 1 1 1

Time for flat scheme:
Find: ϴ(1) Union: ϴ(n)
Can we do better?
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Clarification for hashing:

Open hashing: uses lists, the data is not stored in 
the array.

Closed hashing: data is stored in the array.

Open addressing: the index at which an object will 
be stored in the hash table is not completely 
determined by its hash code. For example: linear
probing.

Closed hashing requires either a perfect hash 
function or open addressing.
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The UNION/FIND data structure is a 
dynamic data structure for graphs used to 
keep track of the connected components. 

It has 2 routines: 

FIND(u): returns the name (representative
vertex) of the component containing 
vertex u.

UNION(u, v): unions together the 
components containing u and v 
(corresponding to an addition of edge (u,v) 
to the graph). 
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The initialization for Approaches 1 and 2 is 
the same. Each vertex is in a component by 
itself whose name is that of the vertex. 
public class UnionFind
{

int n;
int [] parent;
public UnionFind(int nv)
{   int  i; n= nv;

parent= new int[n];
for (i=0; i < n; i++)

parent[i]=i;
}
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Approach 1: A Flat Scheme
The simplest scheme is to choose the 
vertex with minimum label to be the name 
of the component. We maintain an array 
parent which records the name of the 
component for each vertex. 
The FIND function is:
public int flat_find(int u)
{

return(parent[u]);
}
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The UNION function:
public void flat_union(int u, int v)
{  int i, min, max;

if (parent[u] == parent[v]) return; 
if (parent[u]  <  parent[v])
{ min= parent[u]; max=parent[v]; }
else
{ max= parent[u]; min=parent[v]; }

for (i=0; i < n; i++)
if (parent[i]== max) 

parent[i]= min;
}

}
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Using the flat scheme, what are the time 
complexities for:

1. flat_union?

2.  flat_find?
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Approach 2: Slower FIND/Faster UNION
A second approach is to be lazy with the union 
operator: 
public void lazy_union(int u, int v)
{

int pu, pv;

pu= lazy_find(u);
pv= lazy_find(v);
if (pu != pv)

parent[pu]= pv;
}
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0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 5 5 0 8 0

Show the updated parent array and 
also draw a picture after 
lazy_union(7, 4).
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But now, we need to traverse the structure 
to find the representative vertex for the 
component:

int lazy_find(int u)
{

while (parent[u] != u)
{

u=parent[u];
}
return(u);

}
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What is in the parent array which 
corresponds to this picture of a 
union/find data structure (Approach 2):
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Approach 3: Balancing the complexities of 
UNION and FIND
The find for Approach 3 is similar to that for 
Approach 2. However, by being more careful with 
the UNION operation, we can reduce the 
complexity of the FIND. 
The parent operates as before except now 
instead of storing parent[v]=v for a root node, we 
store (-1) * [the number of nodes in the 
component whose representative is v]. 
public UnionFind(int nv)

{   int  i;

n= nv;

parent= new int[n];

for (i=0; i < n; i++)

parent[i]= -1;

}
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The parent operates as before except now 
instead of storing parent[v]=v for a root node, 
we store (-1) * [the number of nodes in the 
component whose representative is v]. 
The find for weighted union becomes:
int w_find(int u)
{

while (parent[u] >= 0)
{

u=parent[u];
}
return(u);

}
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public void w_union(int u, int v)
{  int pu, pv, nu, nv;

pu= w_find(u);
pv= w_find(v);
if (pu == pv) return;

nu= -1 * parent[pu]; 
nv= -1 * parent[pv]; 

WEIGHTED UNION:
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if (nu <  nv)
{ // pv is the new root. 

parent[pv]+= parent[pu]; // -1*(# nodes)
parent[pu]= pv;

}
else
{ // pu is the new root.

parent[pu]+= parent[pv]; // -1 *(#nodes)
parent[pv]= pu;

}
}

With this modification, UNION (w_union) and 
FIND (c_find) each take O(log n) in the worst 
case. 
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0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 5 5 0 8 0

Show the updated parent array and 
also draw a picture after 
w_union(7, 4).

How is this changed if weighted union is used?
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1. What is in the parent array which 
corresponds to this picture of a 
union/find data structure using weighted 
union?

2. Show the 
picture and 
parent array 
after 
w_union(7,5)
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From wikipedia:

Path compression (collapsing find), is a way of 
flattening the structure of the tree whenever 
Find is used on it. The idea is that each node 
visited on the way to a root node may as well be 
attached directly to the root node; they all share 
the same representative. To effect this, as Find 
recursively traverses up the tree, it changes each 
node's parent reference to point to the root that 
it found. The resulting tree is much flatter, 
speeding up future operations not only on these 
elements but on those referencing them, directly 
or indirectly 
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Collapsing find: 

Add a stack to the class:
public class UnionFind
{  int n;

int [] parent; int [] stack;
public UnionFind(int nv)
{

int  i;
parent= new int[n];
stack= new int[n];
for (i=0; i < n; i++)

parent[i]= -1;
}
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int c_find(int u)

{   int v, top;
top=0;
while (parent[u] >= 0)
{

stack[top]= u; top++;
u=parent[u];

}
while (top > 0)
{

top--; v= stack[top];
parent[v]=u;

}
return(u);

}

COLLAPSING 
FIND
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What does the data 
structure look like after 
calling w-union(2,3)? 

Weighted union and collapsing find:

Draw a picture 
and give the 
parent array.

Note: 
w-union(2,3) 
calls c-find(2) 
and  c-find(3).
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Time complexity (wikipedia):
Weighted union (w_union) and collapsing find 
(c_find) complement each other; applied 
together, the amortized time per operation is 
only O(α(n)), where α(n) is the inverse of the 
function f(n) = A(n,n), and A is the extremely 
quickly-growing Ackermann function. Since α(n) 
is the inverse of this function, α(n) is less than 
5 for all remotely practical values of n. Thus, 
the amortized running time per operation is 
effectively a small constant.

Amortized time complexity: the average time 
per operation over a sequence of operations.


