Actual Running Times of Some Sorting Algorithms

In 1999, the CSC 225 students programmed various sorting algorithms in C and timed them on various inputs.

This is where the following plots came from.

Max Sort and Merge sort

Number of Comparisons
Max Sort and Merge Sort

Running Times: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Binary Tree Sort

Random

Inputs

Running Times: $\mathrm{O}^{\left(\mathrm{n}^{\wedge} 2\right)}$

Sorted Inputs

Building the heap- which algorithm is this?

Dynamic Performance of Heapsort

MaxSort

From: [LW95] Kenneth Lambert and Thomas Whaley, An Invitation to Computer Science Laboratory Manual, West Publishing Company, 1995. Conference, 12:5 (1997) 57-70.

Quicksort

Mergesort

A Lower Bound on the Worst Case Complexity for Sorting

DECISION TREE

The Comparison Model:

The problem: Sort n integers.
Operations permitted on the data: comparisons and swaps.

It's very hard to prove good lower bounds for algorithm time complexities.

An easy lower bound for sorting is that any algorithm must take time which is $\Omega(n)$ because if the algorithm does not examine all the data items, then an adversary can change the value of an unexamined data item and make the answer wrong.

We can do better:

Theorem:
For the comparison model, any sorting algorithm requires at least $\Omega(n \log n)$ time in the worst case.

This theorem cannot be beat in the Big Oh sense because we have algorithms which take time in $O(n \log n)$ in the worst case which means it is a tight lower bound.

1. Sort these words in lexicographic order:

 eateither
earn
eaten
2. Write down a definition of lexicographic order.

The permutations on 4 symbols listed in lexicographic order (by columns):
1234
2134
3124
4123
1243
2143
3142
4132
1324
2314
3214
4213
1342
2341
3241
4231
1423
2413
3412
4312
1432
2431
3421
4321

A Decision Tree: Input is a, b, c

We can use our tactics for lower and upper bounding to prove that:

$\log _{2}(n!) \in \theta\left(n \log _{2} n\right)$

Which sorting algorithms have optimal time complexities for the comparison model (in a Big Oh sense)?
These $\theta\left(n \log _{2} n\right)$ in the worst case: Heapsort, Mergesort, Mediansort \dagger

Not optimal since worst case is $\theta\left(n^{2}\right)$:
Quicksort, Maxsort, Binary Tree Sort

Draw the decision tree corresponding to:

else
\{ if (A[0] > A[1]) $\operatorname{swap}(A[0], A[2])$
else \{
if (A[0] > A[2]) $\operatorname{swap}(A[0], A[2])$ $\operatorname{swap}(A[1], A[2])$
\}
\}

