
1

Give recurrences T(n) and S(n) for the time and
space complexity of:
public static void get_space(int level, int [] A)
{

int [] B; int i, n;
n= A.length;
if (n==1) return;

for (i=1; i <= n; i++)
{

B= new int[n-1];
get_space(level+1, B);

}
}

2

Radix

Sort

http://www.cosc.canterbury.ac.nz/tad.takaoka/alg/sorting/radixsort.gif

3

Radix Sort

Radix sort is a fast algorithm which can be used
to sort k-digit integers base r (the radix).

radixSort(L). Input: linked list L.

Action: the cells on L are rearranged so that the
list is sorted.

The digits of the integer x are numbered as

x= dk-1, dk-2, ... , d2, d1, d0.

4

for (i=0; i < k; i++)

for (j=0; j < r; j++)

Set Lj to be an empty list.

while (L is not empty) do

Take the first cell off the front of L.

Let d be digit i of the key value x stored

in this cell. Add this cell to the end of

the list Ld.

endwhile

Set L to be an empty list.

for (j=0; j < r; j++) Append Lj to the end of L.

x= dk-1, dk-2, ... , d2, d1, d0.

Pseudo code

5

http://users.informatik.uni-halle.de/~jopsi/dinf204/radix_sort.gif

6

This algorithm works because it is stable:
amongst keys with equal value, their relative
orders are preserved. The formal proof of
correctness applies the following loop invariant.

Loop invariant:
In the outer for loop, just before the iteration
with a particular value of i, the integers in L are
sorted according to the values induced by their
last i digits, di-1, ... , d2, d1, d0.

Proof (by induction).
[Basis] This statement implies that before the
iteration with i=0, they are not sorted at all.
This is trivially true.

7

Induction step] Assume that just before the
iteration with a particular value of i, the
integers in L are sorted according to the
integers induced by their last i digits. We want
to prove that after the iteration with i, the
values in L are sorted according to the integers
induced by their last i+1 digits,

di, di-1, ... , d2, d1, d0.

8

They are placed into the linked lists (Ld's) so
that things that are last in the array end up at
the end of the lists. Now when you append
things together, the integers are ordered
according to their ith digit di. Amongst those
with the same ith digit, they fall into the same
order as they were in L and hence by induction,
these are sorted by di-1, di-2, ... , d2, d1, d0. So at
the end of this iteration, the values are sorted
according to di, di-1, ... , d2, d1, d0.

9

Note that this same technique could also
be used to sort for other data types such
as strings.

Suppose for example you wanted to sort
strings of length k over the 26 character
alphabet {a-z}. You could then use 26 lists,
one for each character.

10

What is the time for radix sort?

If the integers have k digits then it takes
time θ(k n + kr) which is in θ(n) if k and r
are constants.

This is not a contradiction to the
assertion that any comparison model
sorting algorithm takes Ω(n log n) time:

Radix sort examines individual digits of
the data items which is not allowed in the
comparison model.

