
How much space does this routine use in the
worst case for a given n?
public static void use_space(int n)
{

int b;
int [] A;

if (n<=1) return;

use_space(n/2);
use_space(n/2);

}

2

Heapsort

Madame Trash Heap
A Compost Heap

Pictures from:

http://www.compostinfo.com/tutorial/methods.htm

http://linguiniontheceiling.blogspot.com/

3

Max-heap: The data value at each node is
greater than or equal to the data values
of its children.

4

Left complete binary tree- fill in last level of a
complete binary tree from left to right.

A heap is always stored in a tree with
the shape of a left-complete binary
tree.

5

Left complete binary tree- fill in last level of a
complete binary tree from left to right.

6

Left complete binary tree- fill in last level of a
complete binary tree from left to right.

7

Left complete binary tree- fill in last level of a
complete binary tree from left to right.

8

Left complete binary tree- fill in last level of a
complete binary tree from left to right.

9

Left complete binary tree- fill in last level of a
complete binary tree from left to right.

10

Left complete binary tree- fill in last level of a
complete binary tree from left to right.

11

Left complete binary tree- fill in last level of a
complete binary tree from left to right.

12

Left complete binary tree- fill in last level of a
complete binary tree from left to right.

13

One way to build a heap:

Add the new entry in the position which
is the next slot of a left-complete binary
tree. Then bubble-up to restore the heap
property.

Max-heap: The data value at each node is
greater than or equal to the data values
of its children.

14

Bubble-up pseudocode (swim):

While the current node is not the root
and current.data is greater than the data
value of the parent of current

{

}

1. Swap the data values in nodes
current and the parent of current.
2. Set the current node to be the
parent of current.

15

Then to sort (like a Max Sort but now
the heap is used to determine the max):

Repeat:

Delete the max from the heap.

Fix the heap.

Until the heap is empty.

Problem of the Day
1. Insert the following keys into a heap
using a bubbleUp approach:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

17

Apply repeated deleteMax operations to
this heap in order to sort the data:

18

DeleteMax:

To fix the heap after deleting the max:

Take the data value which is in the slot
which will disappear when the left-
complete binary tree has one node
removed.

Place it at the top of the heap (where
the data value was just deleted).

Then Bubble-down this data value in
order to restore the heap property.

19

To Bubble-down (sink):

Repeat:

Swap the data value with the largest
of its two children until either the data
value moves to the bottom of the tree,
or it is greater than or equal to its
children.

Implementation note: Near the bottom
of the tree, a node may have 0 or 1
children instead of the usual two
children.

20

Timing:

To build the heap: The roughly n/2 nodes at the
bottom of the heap may all have to bubble up to
the top of the heap. So the time to insert all the
nodes is in θ(n log2(n)) in the worst case.

The DeleteMax operation is repeated n times and
in the worst case, results in the value bubbling
down to the bottom of the tree. Since roughly
half the nodes may take log2(n) time, the time
complexity in the worst case is in θ(n log2(n)).

21

Show the result of inserting these values
into a heap one at a time using bubble up
with each insertion:

1, 2, 3, 4, 5, 6, 7

If you get finished early: finish off the
heap sort by doing 7 deleteMax
operations using bubble down to fix the
heap at each step.

22

http://www.biztechmagazine.com/article.asp?item_id=318

23

http://www.eionwireless.com/vip_release/10_reasons.html

24

http://www.cse.chalmers.se/EDU/OS/PIC/06-09-2001.gif

http://swc.scipy.org/lec/img/shell01
/operating_system.png

25

What does a worst case example look like?

26

Show what happens to this heap if you
1. Delete the max.
2. Insert 28.

27

How much work is done to create the heap in the
worst case using the bubble up strategy?

S(n) is proportional to the time taken:

S(n)= 1*1 + 2*2 +4*3 + 8*4 + … + 2h*(h+1)

where n= 1 + 2 + 4 + … + 2h = 2h+1 – 1.

How can we prove that S(n)  θ(n log2(n))?

28

Assume that T, f and g are functions mapping the
natural numbers {0, 1, 2, 3, ...} into the reals.

Definition: “Omega” A function T(n) is in Ω(f(n))
if there exist constants n0 ≥ 0, and c > 0, such
that for all n ≥ n0, T(n) ≥ c * f(n).

29

Recall: n= 1 + 2 + 4 + … + 2h = 2h+1 – 1.

Proof that S(n)  Ω(n log2(n)) :

Use technique for getting a lower bound on a
sum: S(n)=

1*1 + 2*2 +4*3 + 8*4 + … + 2h-1*(h) + 2h*(h+1) ≥

0 + 0 + 0 + 0 + … + 0 + 2h *(h+1)

= (n+1)/2 * log2(n+1) ≥ ½ * n * log2(n)

since (n+1)/2 ≥ ½ * n and log2(n+1) ≥ log2(n).

This is true for n  1, so for the proof that S(n)

 Ω(n log2(n)) we have that c= ½ and n0 = 1.

30

This is a typical lower bounding argument.

The key concept: Because for
approximately ½ of the insertions the time
is in Ω(f(n)), the total time is in Ω(n* f(n)).

31

Assume that T, f and g are functions mapping the
natural numbers {0, 1, 2, 3, ...} into the reals.

Definition: “Big Oh” A function T(n) is in O(f(n))
if there exist constants n0 ≥ 0, and c > 0, such
that for all n ≥ n0, T(n) ≤ c * f(n).

32

Recall: n= 1 + 2 + 4 + … + 2h = 2h+1 – 1.

Proof that S  O(n log2(n)) :

Use technique for getting a upper bound on a
sum:

S= 1*1 + 2*2 + … + 2h-1*(h) + 2h*(h+1) ≤

1*(h+1) + 2*(h+1)+ … + 2h-1*(h+1) + 2h *(h+1)

= (h+1) * [2h+1 – 1] = n * log2(n+1)

It is obvious that it is not true that

n * log2(n+1) ≤ 1* n * log2(n).

So for our proof, let’s try to find n large enough
so that: n * log2(n+1) ≤ 2* n * log2(n).

33

Find n large enough: log2(n+1) ≤ 2* log2(n)

Making the math easier by looking at integers:

h n n+1 log2(n+1)  log2(n) 2* log2(n)

0 1 2 1 0 0

1 3 4 2 1 2

2 7 8 3 2 4

3 15 16 4 3 6

4 31 32 5 4 8

We can see that for n3 (h  1),

log2(n+1) ≤ 2*  log2(n) ≤ 2* log2(n)

34

Theoretical justification that for n  3,

log2(n+1) ≤ 2* log2(n) ≤ 2* log2(n)

Recall: n= 1 + 2 + 4 + … + 2h = 2h+1 – 1.

log2(n+1)= h+1

log2(n) = h

So we have

h+1 ≤ 2* h

which is true for h  1 (meaning n 3)

And the last inequality is true because of the
properties of the floor function.

35

Recall: n= 1 + 2 + 4 + … + 2h = 2h+1 – 1.

Proof that S  O(n log2(n)) :

Use technique for getting a upper bound on a
sum:

S= 1*1 + 2*2 + … + 2h-1*(h) + 2h*(h+1) ≤

1*(h+1) + 2*(h+1)+ … + 2h-1*(h+1) + 2h *(h+1)

= (h+1) * [2h+1 – 1] = n * log2(n+1)

≤ 2* n * log2(n) for n ≥ 3.

So for the proof that S is in

O(n log2(n)) we have that c= 2 and n0 = 3.

36

Assume that T, f and g are functions mapping the
natural numbers {0, 1, 2, 3, ...} into the reals.

Definition: “Theta” The set θ(g(n)) of functions
consists of Ω(g(n))  O(g(n)).

37

http://scienceblogs.com/goodmath/heap-array-example.png

Heaps can be
stored in
arrays with
implicit
parent/child
pointers.

Our text starts the array at 1 probably as an anachronism
from Pascal. We will start at 0 since we are programming in
Java or C.

38

What is the array index of:

The parent of the node in position k?

39

What is the array index of:

The left child of the node in position k?

40

What is the array index of:

The right child of the node in position k?

41

Example:

42

Deleting the max using an array:

43

44

45

46

47

48

It’s possible to build a heap in O(n) time:

49

To heapify at a node r:

Heapify the left subtree.

Heapify the right subtree.

Bubble down the data value at node r.

Non-recursively:

For (i= ?? ; i >=0; i--)

Bubble-down the data value at position i.

How long does this take in the worst case?

50

Let T(h) be the time to heapify a complete binary
tree of height h.

T(0)= 0 since nothing has to be done with only
one node present to make it a heap.

T(h) = h + 2 T(h-1)

Since we first make the left and right subtrees
into a heap in 2T(h-1) time and then bubble-down
the data value at the root taking time
proportional to h.

51

T(h) = h + 2 T(h-1), T(0)= 0.

This is not a fun recurrence to solve, but you
should be able to get to the point where the
recurrence is expressed as a sum.

You also should be able to prove by induction that
the solution to this recurrence is:

T(h) = 2h+1 – h – 2.

What does this say in terms of n about the worst
case time complexity for constructing a heap
using this approach?

52

Suppose that one node in the priority
queue (heap) has its data value changed.

What should you do to fix a max-heap if
its data value:

1. increases?

2. decreases?

3. How much time does this take in the
worst case?

How hard is it to find a minimum key value
in a max-heap?

