
How much space does this routine use in the 
worst case for a given n?
public static void use_space(int n)
{

int b;
int [] A;

if (n<=1) return;

use_space(n/2);
use_space(n/2);

}
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Heapsort

Madame Trash Heap
A Compost Heap

Pictures from:

http://www.compostinfo.com/tutorial/methods.htm

http://linguiniontheceiling.blogspot.com/
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Max-heap: The data value at each node is 
greater than or equal to the data values 
of its children.
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Left complete binary tree- fill in last level of a 
complete binary tree from left to right.

A heap is always stored in a tree with 
the shape of a left-complete binary 
tree.
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Left complete binary tree- fill in last level of a 
complete binary tree from left to right.
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Left complete binary tree- fill in last level of a 
complete binary tree from left to right.
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Left complete binary tree- fill in last level of a 
complete binary tree from left to right.
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Left complete binary tree- fill in last level of a 
complete binary tree from left to right.
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Left complete binary tree- fill in last level of a 
complete binary tree from left to right.
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Left complete binary tree- fill in last level of a 
complete binary tree from left to right.
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Left complete binary tree- fill in last level of a 
complete binary tree from left to right.
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Left complete binary tree- fill in last level of a 
complete binary tree from left to right.
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One way to build a heap:

Add the new entry in the position which 
is the next slot of a left-complete binary 
tree. Then bubble-up to restore the heap 
property.

Max-heap: The data value at each node is 
greater than or equal to the data values 
of its children.
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Bubble-up pseudocode (swim):

While the current node is not the root 
and current.data is greater than the data 
value of the parent of current 

{

}

1. Swap the data values in nodes 
current and the parent of current.
2. Set the current node to be the 
parent of current.
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Then to sort (like a Max Sort but now 
the heap is used to determine the max):

Repeat:

Delete the max from the heap.

Fix the heap.

Until the heap is empty.



Problem of the Day
1. Insert the following keys into a heap 
using a bubbleUp approach:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10
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Apply repeated deleteMax operations to 
this heap in order to sort the data:
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DeleteMax:

To fix the heap after deleting the max:

Take the data value which is in the slot 
which will disappear when the left-
complete binary tree has one node 
removed.

Place it at the top of the heap (where 
the data value was just deleted).

Then Bubble-down this data value in 
order to restore the heap property.
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To Bubble-down (sink):

Repeat:

Swap the data value with the largest 
of its two children until either the data 
value moves to the bottom of the tree, 
or it is greater than or equal to its 
children.

Implementation note: Near the bottom 
of the tree, a node may have 0 or 1 
children instead of the usual two 
children.
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Timing:

To build the heap: The roughly n/2 nodes at the 
bottom of the heap may all have to bubble up to 
the top of the heap. So the time to insert all the 
nodes is in θ(n log2(n)) in the worst case.

The DeleteMax operation is repeated n times and 
in the worst case, results in the value bubbling 
down to the bottom of the tree. Since roughly 
half the nodes may take log2(n) time, the time 
complexity in the worst case is in θ(n log2(n)).
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Show the result of inserting these values 
into a heap one at a time using bubble up 
with each insertion:

1, 2, 3, 4, 5, 6, 7

If you get finished early: finish off the 
heap sort by doing 7 deleteMax 
operations using bubble down to fix the 
heap at each step.
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http://www.biztechmagazine.com/article.asp?item_id=318
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http://www.eionwireless.com/vip_release/10_reasons.html
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http://www.cse.chalmers.se/EDU/OS/PIC/06-09-2001.gif

http://swc.scipy.org/lec/img/shell01
/operating_system.png
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What does a worst case example look like?
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Show what happens to this heap if you
1. Delete the max.
2. Insert 28.
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How much work is done to create the heap in the 
worst case using the bubble up strategy?

S(n) is proportional to the time taken:

S(n)= 1*1 + 2*2 +4*3 + 8*4 + … + 2h*(h+1)

where n= 1 + 2 + 4 + … + 2h = 2h+1 – 1.

How can we prove that S(n)  θ(n log2(n))?



28

Assume that T, f and g are functions mapping the 
natural numbers {0, 1, 2, 3, ...} into the reals. 

Definition: “Omega” A function T(n) is in Ω(f(n))
if there exist constants n0 ≥ 0, and c > 0, such 
that for all n ≥ n0, T(n) ≥ c * f(n). 
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Recall: n= 1 + 2 + 4 + … + 2h = 2h+1 – 1.

Proof that S(n)  Ω(n log2(n)) :

Use  technique for getting a lower bound on a 
sum: S(n)= 

1*1 + 2*2 +4*3 + 8*4 + … + 2h-1*(h) + 2h*(h+1)  ≥ 

0    +  0   +  0   +  0   + … +        0    + 2h *(h+1) 

= (n+1)/2 * log2(n+1) ≥  ½ * n * log2(n) 

since (n+1)/2 ≥  ½  * n  and log2(n+1) ≥  log2(n). 

This is true for n  1, so for the proof that S(n)

 Ω(n log2(n)) we have that c= ½ and n0 = 1.
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This is a typical lower bounding argument.

The key concept: Because for 
approximately ½ of the insertions the time 
is in Ω(f(n)), the total time is in Ω(n* f(n)). 
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Assume that T, f and g are functions mapping the 
natural numbers {0, 1, 2, 3, ...} into the  reals. 

Definition: “Big Oh” A function T(n) is in O(f(n))
if there exist constants n0 ≥ 0, and c > 0, such 
that for all n ≥ n0, T(n) ≤ c * f(n). 
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Recall: n= 1 + 2 + 4 + … + 2h = 2h+1 – 1.

Proof that S  O(n log2(n)) :

Use  technique for getting a upper bound on a 
sum:

S= 1*1    +    2*2    + … + 2h-1*(h)     + 2h*(h+1)  ≤

1*(h+1) + 2*(h+1)+ … + 2h-1*(h+1) + 2h *(h+1) 

= (h+1) * [2h+1 – 1] = n * log2(n+1) 

It is obvious that it is not true that

n * log2(n+1) ≤ 1*  n * log2(n). 

So for our proof, let’s try to find n large enough 
so that: n * log2(n+1) ≤ 2*  n * log2(n). 



33

Find n large enough:  log2(n+1) ≤ 2* log2(n) 

Making the math easier by looking at integers:

h n n+1 log2(n+1)  log2(n) 2* log2(n)

0 1 2 1 0 0

1 3 4 2 1 2

2 7 8 3 2 4

3 15 16 4 3 6

4 31 32 5 4 8

We can see that for n3 (h  1), 

log2(n+1) ≤   2*  log2(n) ≤ 2* log2(n) 
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Theoretical justification that for n  3, 

log2(n+1) ≤   2* log2(n) ≤ 2* log2(n) 

Recall: n= 1 + 2 + 4 + … + 2h = 2h+1 – 1.

log2(n+1)= h+1

log2(n) = h  

So we have 

h+1 ≤  2* h 

which is true for h  1  (meaning n 3)

And the last inequality is true because of the 
properties of the floor function.
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Recall: n= 1 + 2 + 4 + … + 2h = 2h+1 – 1.

Proof that S  O(n log2(n)) :

Use  technique for getting a upper bound on a 
sum:

S= 1*1    +    2*2    + … + 2h-1*(h)     + 2h*(h+1)  ≤

1*(h+1) + 2*(h+1)+ … + 2h-1*(h+1) + 2h *(h+1) 

= (h+1) * [2h+1 – 1] = n * log2(n+1)   

≤ 2*  n * log2(n) for n ≥ 3.

So for the proof that S is in 

O(n log2(n)) we have that c= 2 and n0 = 3.
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Assume that T, f and g are functions mapping the 
natural numbers {0, 1, 2, 3, ...} into the reals. 

Definition: “Theta” The set θ(g(n)) of functions 
consists of Ω(g(n))  O(g(n)). 
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http://scienceblogs.com/goodmath/heap-array-example.png

Heaps can be 
stored in 
arrays with 
implicit 
parent/child 
pointers.

Our text starts the array at 1 probably as an anachronism 
from Pascal. We will start at 0 since we are programming in 
Java or C.
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What is the array index of:

The parent of the node in position k?
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What is the array index of:

The left child of the node in position k?
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What is the array index of:

The right child of the node in position k?
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Example:
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Deleting the max using an array:
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It’s possible to build a heap in O(n) time:
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To heapify at a node r:

Heapify the left subtree.

Heapify the right subtree.

Bubble down the data value at node r.

Non-recursively: 

For (i= ?? ; i >=0; i--)

Bubble-down the data value at position i.

How long does this take in the worst case?
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Let T(h) be the time to heapify a complete binary 
tree of height h.

T(0)= 0 since nothing has to be done with only 
one node present to make it a heap.

T(h) = h + 2 T(h-1) 

Since we first make the left and right subtrees 
into a heap in 2T(h-1) time and then bubble-down 
the data value at the root taking time 
proportional to h.
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T(h) = h + 2 T(h-1), T(0)= 0.

This is not a fun recurrence to solve, but you 
should be able to get to the point where the 
recurrence is expressed as a sum.

You also should be able to prove by induction that 
the solution to this recurrence is:

T(h) = 2h+1 – h – 2.

What does this say in terms of n about the worst 
case time complexity for constructing a heap 
using this approach?
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Suppose that one node in the priority 
queue (heap) has its data value changed.

What should you do to fix a max-heap if 
its data value:

1. increases?

2. decreases?

3. How much time does this take in the 
worst case?

How hard is it to find a minimum key value 
in a max-heap?


