
Suppose that n= 2k -1 for some integer k ≥1.

1. Solve this recurrence relation:

T(1)= 1, and

otherwise, T(n)= 1 + T
n−1

2
.

2. Prove that T(n) is 𝜃 𝑓(𝑛) for a function

f(n) that is as simple as possible.

1

2

Assignment 2A Programming and Assignment 1A
resubmissions are due on Thursday Oct. 12 at
11:55pm.
When you upload your files for Assignment 2A:
1.Make sure you hit SUBMIT EVERY time you

revise your files. There is no harm in doing this
since I have set connex up to allow an unlimited
number of resubmissions.

2.For 2A submissions: make sure that for each of
LinkedList.java and BigIntegerList.java, you only
have ONE version of each file. Delete old
versions. If you have more than one version
your code will not compile.

3

Review Lecture 12:
Assignment 1A: Hints for writing good programs
before submitting your programs.
Code submitted for this class should be elegant
and efficient (subject to meeting the constraints
given: reverse should be a divide and conquer
method that splits the list in half).

Midterm tutorial: Tuesday Oct. 17, 7pm-10pm,
Elliott 168.

Assignment 2B Written is due at the beginning
of class on Monday Oct. 16.

4

In order to not disadvantage the Friday tutorial students with
respect to the midterm exam:
There will be tutorial: Friday Oct. 13
There will be no tutorial: Friday Oct. 20
If you have tutorial on Fridays and cannot attend on Oct. 13,
then you are welcome to attend any one of the other sections:
On Friday Oct 13:
B06 ECS 258 F 13:30-14:20
B07 ECS 258 F 14:30-15:20
On Monday Oct. 16:
B01 ECS 258 M 13:30-14:20
B02 ECS 258 M 14:30-15:20
B03 ECS 258 M 15:30-16:20
On Tuesday Oct. 17:
B04 ECS 258 T 09:30-10:20
B05 ECS 258 T 10:30-11:20

Slides with gray backgrounds are taken from:
http://algs4.cs.princeton.edu/lectures/14AnalysisOfAlgorithms-2x2.pdf
Copyright © 2000–2016 Robert Sedgewick and Kevin Wayne.

5

http://algs4.cs.princeton.edu/lectures/14AnalysisOfAlgorithms-2x2.pdf

6

7

Java takes this
time because it
initializes
arrays.

8

9

10

11

12

13

14

15

16

More widely accepted notation:

Assume that T, f and g are functions mapping the
natural numbers {0, 1, 2, 3, ...} into the reals.

Definition: “Big Oh” A function T(n) is in O(f(n))
if there exist constants n0 ≥ 0, and c > 0, such
that for all n ≥ n0, T(n) ≤ c * f(n).

Definition: “Omega” A function T(n) is in Ω(f(n))
if there exist constants n0 ≥ 0, and c > 0, such
that for all n ≥ n0, T(n) ≥ c * f(n).

Definition: “Theta” The set θ(g(n)) of functions
consists of Ω(g(n)) O(g(n)).

What is this using 𝜃 notation?

17

What is this using 𝜃 notation?

18

19

20

21

22

State a recurrence relation T(n) for the
Big Oh time complexity of the monday
method on the next slide.

If n= 2k, what is the value of x after the
call:

int x= monday(0, n, n);

23

public static int monday(int level, int n, int original_n)
{ int i, j, sum, silly_sum;

if (n==1) return(original_n);

silly_sum=0;
for (i=0; i < n; i++)

for (j= i+1; j< n; j++)
silly_sum++;

sum= monday(level+1, n/2, original_n);
sum+= monday(level+1, n/2, original_n);
sum+= monday(level+1, n/2, original_n);

for (i=0; i < n; i++) silly_sum++;

return(sum);
}

24

Recursive code:

public static int binary_search(
int level, int key,
int [] A, int lo, int hi)

{
int mid, pos;

// Entry is not in the array.

if (lo > hi) return(-1);

mid= lo + (hi- lo)/2;
25

if (key < A[mid])
{

pos= binary_search(level+1, key,
A, lo, mid-1);

return(pos);
}
else if (key > A[mid])
{

pos= binary_search(level+1, key,
A, mid+1, hi);

return(pos);
}
else return(mid);

}
26

0 1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18 20

For this example: A.length= 10

The initial call for a key is:

int pos= binary_search(0, key,
A, 0, A.length-1);

27

0 1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18 20

A[5 ... 9] mid = 7

Search for 14:
mid= lo + (hi- lo)/2;
A[0 ... 9] mid = 4

0 1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18 20

28

0 1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18 20

Search for 14:
mid= lo + (hi- lo)/2;
A[5 ... 6] mid = 5

A[6 ... 6] mid = 6

0 1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18 20

returns 6
29

0 1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18 20

A[5 ... 9] mid = 7

Search for 15:
mid= lo + (hi- lo)/2;
A[0 ... 9] mid = 4

0 1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18 20

30

0 1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18 20

Search for 15:
mid= lo + (hi- lo)/2;
A[5 ... 6] mid = 5

A[6 ... 6] mid = 6

0 1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18 20

A[7 ... 6] Empty subproblem: lo > hi
returns -1

31

On which problem sizes are the left and
right subproblems equal in length at
every step?
Give a recurrence relation for the time
complexity of binary search and solve it.

How much time does binary search take:
1. In the best case?
2. In the worst case for a successful

search?
3. On average for a successful search?
4. On average for an unsuccessful

search?
32

33

34

35

