1. Let a, b, and d be constants with a, b, $d \geq 0$. Prove that

$$
2+3 a n+4 b n \log _{2} n+d n^{2} \in O\left(n^{2}\right)
$$

2. Solve this recurrence relation by repeated substitution:
$T(k)=k+T(k-1), T(0)=2$.
Start numbering your steps with Step 0:

Announcements:

Assignment 1 B is due on Thursday at the beginning of class.

Some practice problems for Lab 3 have been posted.

Make sure that when you upload programs that they compile!

Consider the following code fragment:

sum=2;
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
\{

$$
\text { sum }=\text { sum }+i ;
$$

\}
Let $T(k)$ be the value of the variable sum after k iterations of the loop.

1. Set up a recurrence for $T(k)$.
2. Solve it.
3. Prove your answer is correct by induction.
sum=2;
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
\{

$$
\text { sum }=\text { sum }+i ;
$$

\}
Theorem: After k iterations of the loop, the value of sum is equal to $2+[k(k+1) / 2]$.
sum=2;
for (i=1; $i<=n ; i++$)

> Theorem: After k iterations of the loop, the value of sum is equal to $2+k(k+1) / 2$.

$$
\text { sum }=\text { sum }+i \text {; }
$$

\}

[Base case, $k=0$] The case where $k=0$ corresponds to the case where the loop has executed 0 times. In this case, sum has its initial value of 2 . The formula says that the value of sum is $2+k(k+1) / 2=$
$2+0$ * $(0+1) / 2=2$ as required .
sum=2;
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
Theorem: After k
iterations of the loop, the value of sum is equal to $2+k(k+1) / 2$.

$$
\text { sum }=\text { sum }+i ;
$$

\}
[Induction step]
Assume that after k iterations of the loop, the value of sum is equal to $2+k(k+1) / 2$.

We want to prove that after $k+1$ iterations of the loop, the value of sum is equal to
$2+(k+1)((k+1)+1) / 2=\left(k^{2}+3 k+6\right) / 2$.
sum=2;
for ($i=1 ; i<=n ; i++$)

> Theorem: After k iterations of the loop, the value of sum is equal to $2+k(k+1) / 2$.

$$
\text { sum }=\text { sum }+i ;
$$

\}

Consider iteration $k+1$ of the loop. The value of i is equal to $k+1$. By induction, the value of sum just before i is added to it is equal to $2+k(k+1) / 2$.

Then $\mathrm{i}=\mathrm{k}+1$ is added to sum to give the new value of sum equal to $2+k(k+1) / 2+(k+1)$. Simplifying algebraically gives sum $=\left(4+k^{2}+k+2 k+2\right) / 2$ and therefore, sum $=\left(k^{2}+3 k+6\right) / 2$ as required. 7
sum=2;
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
\{
Theorem: After k iterations of the loop, the value of sum is equal to $2+k(k+1) / 2$.

$$
\text { sum }=\text { sum }+i \text {; }
$$

CONCLUSION:
When the loop finishes executing, the value of sum is equal to:
$2+n(n+1) / 2$.

Consider the following code fragment:
sum=2;
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
\{

$$
\text { sum }=\text { sum }+i ;
$$

\}
4. How much time does this code fragment take to execute?
5. How could you replace it with code that runs faster?

