
Solve this recurrence relation by repeated 
substitution. I am going to ask you to hand in 
your work so do it on a clean piece of paper.
You will get credit for participation as long as 
you hand something in.

Assume that n= 2k for some integer k ≥ 0.
The recurrence relation has
T(1)= 14
For n ≥ 2, T(n) = n + T(n/2)

Make sure you number your steps starting at 
step 0.
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Announcements
Assignment #1:
Part 1A Programming Questions: Upload to connex by Saturday 

Sept. 23 at 11:55pm.

Double check the assignment specifications before submitting your 
assignment to ensure you followed the instructions. Put your 
name inside your program (in the comments at the top).

Connex is set up to accept an unlimited number of resubmissions up 
until the deadline. It’s a good idea to upload what you have early-
you can revise it later if you improve the code.

Part 1B Written Questions: Hand in on paper at the beginning of 
class on Thursday September 28.

It’s better to hand in a partially completed assignment then to
hand in nothing at all. You must pass the assignments to pass 
the course.

For help: stay after class today or send e-mail. Attach your 
program.
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Outline

• Lower bounds and upper bounds on 
functions.

• Terminology for talking about the 
amount of time or space that an 
algorithm uses.



5Picture from 

http://archives.math.utk.edu/visual.calculus/4/riemann_sums.3/microcalc.html

The area in the red boxes is a lower bound
for the area under the yellow curve.
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Picture from 

http://archives.math.utk.edu/visual.calculus/4/riemann_sums.3/microcalc.html

The area in the red boxes is an upper bound
for the area under the yellow curve.
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The function 2n is a lower bound for 3n, 
and 4n is an upper bound (n ≥ 0).
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Definition: Lower bound. 
A function f(x) is a lower bound for g(x) over a 
range R if for all x in R, f(x) ≤ g(x). 

Definition: Upper bound. 
A function f(x) is an upper bound for g(x) over a 
range R if for all x in R, f(x) ≥g(x). 

Definition: Optimal. A solution is optimal if it is 
impossible to do better. What "better" means 
depends on the problem situation. 
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Why do we care about lower and upper bounds?

When analyzing algorithms, it is often easier to 
bound the amount of work done than to compute 
it exactly. 

One example:

1 + 2 + 3 + 4 + … + (n-2) + (n-1) + n.

We know a closed formula for this: n (n+1)/2.

But assume for a minute we do not and let’s work 
out some bounds.
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n

A = ∑   ai  
i=1

n

B = ∑   bi  
i=1

n

C= ∑   ci  
i=1

General Technique for bounding a sum:
Assume ai , bi, and ci ≥ 0 for i= 1, 2, 3, … , n.

If ai ≤ bi ≤ ci for i= 1, 2, 3, … n

then  A ≤  B  ≤ C .

That is, A is a lower bound for B

and C is an upper bound for B
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n f(n) g(n)

10 10,000 10,000

50 250,000 6,250,000

100 1,000,000 100,000,000

150 2,250,000 506,250,000

f(n) = 100 n2

g(n) = n4

Example from:

http://www.cs.odu.edu/~toida/nerzic/content/function/growth.html
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Assume that T, f are functions mapping the 
natural numbers {0, 1, 2, 3, ...} into the reals. 

Definition: “Big Oh” A function T(n) is in O(f(n))
if there exist constants n0 ≥ 0, and c > 0, such 
that for all n ≥ n0, T(n) ≤ c * f(n). 

Important: here I differ from older usage in 
defining O(f(n)) to be a set of functions. This will 
prove useful later. 



14http://www.cs.odu.edu/~toida/nerzic/content/function/growth.html

Growth rates of functions
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Big-Oh    Informal name

O(1)            constant

O(log n)      logarithmic

O(n)            linear

O(n log n)    n log n

O(n2)        quadratic

O(n3)        cubic

O(2n)        exponential

O(nc) for constant c,      polynomial time
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Assume that T, f and g are functions mapping the 
natural numbers {0, 1, 2, 3, ...} into the reals. 

Definition: “Omega” A function T(n) is in Ω(f(n))
if there exist constants n0 ≥ 0, and c > 0, such 
that for all n ≥ n0, T(n) ≥ c * f(n). 

Definition: “Theta” The set θ(g(n)) of functions 
consists of Ω(g(n))  O(g(n)). 
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1. Prove that 

f(n) =  2 + n + 3n2 + 5 n 3  is in

(a) O(n3),

(b) Ω(n3), and

(c) θ(n3).

2. Prove that  -10 + 6n is in Ω(n).
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Prove that 

k

Σ 2i    

i=0

is in  θ(2k).
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Getting a tight  (optimal) estimate for the 
running time T(n) of an algorithm in the “Big 
Oh sense” means finding g(n) so that T(n) is 
in θ(g(n)). 

To prove that an algorithm for a problem is 
optimal  with respect to Big Oh analysis, 
you need to show: 

1.  The running time T(n) of the algorithm is in 
O(g(n)) for some function g(n),  and

2.  the runnning times for all algorithms under 
the given computational model must be in 
Ω(g(n)) for at least one input of size n. 
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Logs 

Logs arise often in CSC 225 as an artifact of 
divide and conquer algorithms.

Definitions: Logarithms

For n= 2k, log2(n) = k.

For n= 10k, log10(n) = k.

In general: For n= ck, logc(n) = k.
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Calculus- log conversion formula:

logb(x) = logc(x) / logc(b) 

Theorem: log2(n)  θ(log10(n))

In CSC 225, the  logs are generally log2

but this shows in a Big Oh sense it does 
not matter what base it is for an 
expression like “O(n log n)”.
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Theorem: The function 

f(n)= 1 + 4n + 2 n2  + n3

is not in the set O(n2).
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How do we prove that f(n) is not in O(g(n))?

Tactic: Proof by contradiction

To show that a statement S(n) is not true:

1. Assume that S(n) is true.

2. Apply valid mathematical operations.

3. Reach a conclusion that is obviously false.

Since the only thing done which is possibly 
mathematically invalid is to assume that S(n) is 
true, S(n) must be false.


