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public class Test_Static

{

int a;

static int b;

public Test_Static(int av, int bv)

{

a= av; b= bv;

}

public void print()

{

System.out.println

("a= " + a + " b= " + b);

}

public static void main (String [] args)

{

Test_Static x, y;

x= new Test_Static(3, 4);

System.out.print("x has "); 

x.print();

y= new Test_Static(5, 6);

System.out.print("y has "); 

y.print();

System.out.print("x has "); 

x.print();

}

}

What does 
this print?
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If the type of a field of an object is not 
static, every object has its own value for 
that field.

If the type is static, the program only has 
ONE variable for that field, not one per 
object.

Every LinkedList has a value for n, start 
and rear.

So should n, start and rear be static or 
not?
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Hints for designing recursive routines:
At the top of the class use
static boolean debug = true;

Do lots of debug printing.
For example, for reverse:

Print the list when entering the routine.
Print list1 and list2 before and after reversing.
Print the final reversed list.

For all print statements, include the level.
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Recursive call structure for reverse:
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To ensure that level has the correct value at each 
recursive call, you call reverse initially like this:
reverse(0);

The recursive calls for list1 and list2 should be:
list1.reverse(level+1); 
list2.reverse(level+1);

DO NOT increment or decrement reverse.
Some bad code:

level++;
or
list1.reverse(++level);
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Level 0: The original linked list:1 2 3 4 5 6
Level 0: List 1 before reversing: 1 2 3
Level 0: List 2 before reversing: 4 5 6
Level 1: The original linked list:1 2 3
Level 1: List 1 before reversing: 1
Level 1: List 2 before reversing: 2 3
Level 2: The original linked list:1
Level 2: The original linked list:2 3
Level 2: List 1 before reversing: 2
Level 2: List 2 before reversing: 3
Level 3: The original linked list:2
Level 3: The original linked list:3
Level 2: List 1 after  reversing: 2
Level 2: List 2 after  reversing: 3
Level 2: The list after reversing:3 2
Level 1: List 1 after  reversing: 1
Level 1: List 2 after  reversing: 3 2
Level 1: The list after reversing:3 2 1
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Level 1: The original linked list:4 5 6
Level 1: List 1 before reversing: 4
Level 1: List 2 before reversing: 5 6
Level 2: The original linked list:4
Level 2: The original linked list:5 6
Level 2: List 1 before reversing: 5
Level 2: List 2 before reversing: 6
Level 3: The original linked list:5
Level 3: The original linked list:6
Level 2: List 1 after  reversing: 5
Level 2: List 2 after  reversing: 6
Level 2: The list after reversing:6 5
Level 1: List 1 after  reversing: 4
Level 1: List 2 after  reversing: 6 5
Level 1: The list after reversing:6 5 4
Level 0: List 1 after  reversing: 3 2 1
Level 0: List 2 after  reversing: 6 5 4
Level 0: The list after reversing:6 5 4 3 2 1
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In a class such as LinkedList, a non-static method 
has an object associated with the method. For 
example: public void reverse(int level)

Inside reverse you can refer to n, start and rear.
To call a method like this you use
object_name.reverse(level);

Inside printBigInteger (which is not static) you 
can call reverse like this:    reverse(0);
which  is semantically equivalent to:
this.reverse(0); So the object name is “this”.

If you want to call it on list1, use
list1.reverse(level+1);
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A method that is static has no object associated 
with the method.

For example: public static LinkedList 
readBigInteger(Scanner in) 

When you call this you do not yet have a LinkedList 
object. It creates one and returns it to you.

You cannot refer to n, start, rear in a static method 
in the LinkedList class.

But if we have
LinkedList x= new LinkedList();
You can refer to x.n, x.start and x.rear.
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To call a static method such as :

public static LinkedList
readBigInteger(Scanner in)

Suppose we have declared x:
LinkedList x;

If you are calling it from a method inside the 
LinkedList class you can just use:

X= readBigInteger(in);
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To call a static method such as :
public static LinkedList 
readBigInteger(Scanner in)
Suppose we have declared x:
LinkedList x; 

From outside the class such as in Test.java you can use 
(preferred): 
x= LinkedList.readBigInteger(in);

Or (not as nice but legal):
x=null; // To avoid an error with x not being initialized

x= x.readBigInteger(in)

Note: calling like this does not give you access to n, 
start or rear inside the readBigInteger method.
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To do reverse recursively:
0. If n is 1, return. // Base case

1. Divide the problem into two  
subproblems.

2. Solve the subproblems. (Conquer)

3. Marry the solutions.

Some people are trying to do the marriage 
step before the conquer step.

.
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The recurrence relation from last class:

Consider this recurrence which is only defined 
for values of n= 2k for some integer k ≥ 0:

T(1)= 1, T(n)= 1 + 2T(n/2).

The solution we obtained was:

T(2k) = 1 + 2 + 4 + … + 2k = 2k+1 - 1
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To show your work when using repeated substitution, 
number your steps: 
Step 0: The original recurrence for T(n). 
Step 1: The formula for T(n) after one substitution 
into the RHS. 
Step 2: The formula for T(n) after two substitutions 
into the RHS. 
…

DO not oversimplify by grouping terms together.



15

At step i, we want to be able to see what the ith
term is and what the term is involving T.

Determine the general pattern for Step i: 

Step i: The formula for T(n) after i substitutions 
into the RHS. 

Determine at which step i the base case appears on 
the RHS of the formula, say at some step f.

Set i=f and then plug in the base case to get a  
formula for the recurrence relation that no longer 
has T in it.
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The recurrence relation from last class:
n= 2k for some integer k ≥ 0:
T(1)= 1, T(n)= 1 + 2T(n/2).
Replace n by 2k (this often makes the math 
easier): T(20)= 1, T(2k)= 1 + 2T(2k-1).

Step 0: T(2k)= 1 + 2T(2k-1).
Step 1: T(2k)= 1 + 2 *[ 1 + 2T(2k-2)] 

= 1 + 2 + 4 * T(2k-2)

Step 2: T(2k)= 1 + 2 + 4* [1 + 2T(2k-3)]
= 1 + 2 + 4 + 8 * T(2k-3)

Step i: T(2k ) = 1 + 2 + 4 + + … + 2i + 2i+1 * T(2k-i-1)
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The base case is: T(20)= 1
Step i: T(2k ) = 1 + 2 + 4 + + … + 2i + 2i+1 * T(2k-i-1)

At which step i is the base case on the RHS?

T(20) =  T(2k-i-1) ⇒ 20 =  2k-i-1 ⇒ 0 = k – i – 1
⇒ i = k-1

Step k-1: T(2k ) = 1 + 2 + 4 + + … + 2k-1 + 
2k-1+1 * T(2k-(k-1)-1 )

Since T(2k-(k-1)-1 ) = T(20)= 1,

Step k-1: T(2k ) = 1 + 2 + 4 + + … + 2k-1 + 2k
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S= 1 + 2 + 4 + + … + 2k-1 + 2k

A trick for remembering the formula for S:
Write S as a binary number

Column 2k+1 2k 2k-1 … 23 22 21 20

S= 1 1 1 1 1 1

Add 1 1

S+1= 1 0 0 0 0 0 0

Since S+1 = 2k+1, S= 2k+1 -1.
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The recurrence relation from last class:

Consider this recurrence which is only defined 
for values of n= 2k for some integer k ≥ 0:

T(1)= 1, T(n)= 1 + 2T(n/2).

The solution we obtained was:

T(2k) = 1 + 2 + 4 + … + 2k = 2k+1 – 1

Suppose instead we did the math incorrectly
And had the solution T(2k)= 2k.
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Consider this recurrence which is only defined 
for values of n= 2k for some integer k ≥ 0:
T(1)= 1, T(n)= 1 + 2T(n/2).
We will try to prove by induction that T(2k)= 2k.
[Base case]
The base case for the recurrence relation is 
that T(1)= T(20)= 1. The formula gives that
T(20)= 20 = 1 as required.
[Induction step]
Assume that T(2k)= 2k.
We want to prove that T(2k+1)= 2k+1.
From the recurrence relation, 
T(2k+1)= 1 + 2T(2k). By induction, T(2k)= 2k .
Therefore, T(2k+1)= 1 + 2* 2k = 2k+1 + 1 
≠ 2k+1 . Therefore the proof fails.
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Consider this recurrence which is only defined 
for values of n= 2k for some integer k ≥ 0:
T(1)= 1, T(n)= 1 + 2T(n/2).
Prove by induction that T(2k)= 2k+1- 1.
[Base case]
The base case for the recurrence relation is 
that T(1)= T(20)= 1. The formula gives that
T(20)= 21 - 1 =  1 as required.
[Induction step]
Assume that T(2k)= 2k+1 – 1.
We want to prove that T(2k+1)= 2k+2 – 1.
From the recurrence relation, 
T(2k+1)= 1 + 2T(2k). By induction, T(2k)= 2k+1 – 1.
Therefore, T(2k+1)= 1 + 2* [2k+1 - 1] = 2k+2 -1 
as required.
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What is wrong with my induction proof?

In a drunken haze I decided that the solution to the 
recurrence T(1)=1, T(n)= 1 + T(n-1) is 

1 + 2 + 3 + … + n.

Theorem: The solution to the recurrence is n(n+1)/2.

Proof. [Basis] T(1)=1 and 1 *(1+1)/2 = 1 as required.

[Induction step] Assume that 1 + 2 + … + n-1 + n = n(n+1)/2.

We want to prove that 1 + 2 + … + n-1 + n + (n+1) = 
(n+1)(n+2)/2 = (n2 +3n +2)/2.

By induction, 1 + 2 + … + n= n(n+1)/2.

So 1 + 2 + .. + n + (n+1)=  n(n+1)/2 + (n+1).

Simplifying: (n2 + n + 2n + 2)/2= (n2 +3n +2)/2 as required.


