
Name: ___________________________________

ID Number: ___________________________________

CSC 225 Midterm Exam

Oct. 26, 1998

Instructions:

1. Putyour name on every page of the exam.

2. Nocalculators or other aids. Closed book.

3. Readthrough the entire exam before beginning. You should have 6 pages including

this header page.

Question Value Mark

1 20

2 20

3 30

4 30

Total 100

Recall that you need at least 40% (40/100) in order to write the final exam in this course.



- 2 -

1. [20]Solve the following recurrence using repeated substitution.

T (n) = n + 2T (n/2), T (2) = 3.

You may assume thatn = 2k for some integerk ≥ 1.



- 3 -

2. [20] Prove by induction that your solution to question #1 is correct.Or for part

marks [10], apply induction to the point where you realize that your solution to #1 is

incorrect, and explain what goes wrong.

The recurrence from Question #1:

T (n) = n + 2T (n/2), T (2) = 3.

You may assume thatn = 2k for some integerk ≥ 1.



- 4 -

3.(a) [10]State precisely the definition ofO.

(b) [10] Use your definition from (a) to prove that a polynomial of the form

p(n) = a0 + a1 n + a2 n2 is in O(n2) whereai > 0 for i = 0, 1, 2.

(c) [10] Prove that p(n) = a0 + a1 n + a2 n2 is not inO(n) whereai > 0 for i = 0, 1, 2.



- 5 -

4. [30] Write detailed pseudocode (almost C code but without worrying about syntax)

for middle_max(n, start, previous_ptr, max_ptr). The requirements are the same

as assignment #1, and are included on the next page in case you need to reread

them. Includelots of comments.



- 6 -

Middle_max takes as input:

n - the number of elements on the list L.

start- a pointer to the beginning of the linked list L.

Middle_max returns as output:

previous_ptr- a pointer to the element before the max in the list or NULL if the maxi-

mum element is at the front of the list.

max_ptr- a pointer to the maximum element in the list.

The maximum is found by:

1. Divide the problem into two subproblems L1 and L2 where L1 is a list contain-

ing only the first floor(n/2) elements of L, and L2 is a list containing the last

ceiling(n/2) elements of L.

2. FindM1 the maximum element in L1 and find M2 the maximum element in L2

recursively.

3. Returnthe larger of M1 and M2.

Create the new L1 and L2 by changing the values of pointers in L, and NOT by allocating

any new space for linked list items. At the end, the list L must be restored to its original

state.


