CSC 225 Midterm Exam: Summer 1997

1.(a) [10 marks] Define what it means for $f(n) \in O(g(n))$.
(b) [10 marks] Use your definition from (a) to prove that if $S(n) \in O(f(n))$ and $T(n) \in O(g(n))$, and both $S(n)$ and $T(n)$ are strictly positive for all n, then $S(n) * T(n) \in O(f(n) * g(n))$.
2. Consider $S(n)=\sum_{i=1}^{n} i^{3}$.
(a) [10 marks] Prove by lower bounding each term of the sum that $S(n) \geq \frac{1}{16} n^{4}$.
(b) [10 marks] Prove by upper bounding each term of the sum that $S(n) \leq n^{4}$.
(c) [10 marks] Argue that $S(n) \in \Theta\left(n^{4}\right)$.
3. For this question, define $T(n)=1+2 * T(n-1), T(0)=1$.
(a) [10 marks] Use repeated substitution to express $T(n)$ as a sum. Your sum should not be a recurrence.
(b) [10 marks] Give a closed formula (one without a summation sign) for $T(n)$.
(c) [10 marks] Prove by induction that your answer to part (b) is correct.
4. [30 marks] Give pseudocode for an iterative divide/split function for merge sort which takes as input a linked list L starting at start, and returns as output two lists L_{1} and L_{2} starting at start 1 and start 2 respectively. The algorithm should work by placing the first cell from L on L_{1}, then it should place the second cell from L on L_{2}, then the third cell from L goes on L_{1}, and the fourth cell from L goes on L_{2}, and so on. For example, if the input is:

The output should be:

Be sure to include lots of comments in your pseudocode.

